THERMAL DECOMPOSITION OF BIS-(DL-VALINATO)COPPER(II) AND BIS-(DL-METHIONINATO)COPPER(II)*

P. Gili and P. Martin Zarza

DEPARTAMENTO DE QUÍMICA INORGÁNICA, UNIVERSIDAD DE LA LAGUNA, TENERIFE, CANARY ISLANDS, SPAIN

(Received August 28, 1985)

A kinetic study of the thermal decomposition of the complexes bis-(DL-valinato)copper(II) and bis-(DL-methioninato)copper(II) was carried out using thermogravimetry in a dynamic regime, following the theoretical model of Šatava and including the equation used by Johnson and Gallagher:

\[
\frac{1}{1 - \alpha} - 1 = kt
\]

Kinetic parameters were calculated and are compared with those obtained previously for the complex bis-(L-tryptophanato)copper(II). The sequence of thermal stability found is: Cu(DL-Val)_2 < Cu(L-Trp)_2 < Cu(DL-Met)_2.

In this work we report for the first time a kinetic study of the thermal decomposition in the solid phase of the complexes bis-(DL-valinato)copper(II) and bis-(DL-methioninato)copper(II) (abbreviated Cu(DL-Val)_2 and Cu(DL-Met)_2, respectively). This study has been carried out using thermogravimetry in a dynamic regime following the theoretical model of Šatava [3] and including the second-order equation

\[
\frac{1}{1 - \alpha} - 1 = kt
\]

used by Johnson and Gallagher [4].

* Presented at the 1985 World Conference on Thermal Analysis, Bad Hofgastein, Austria.
Results and discussion

The curves of loss of mass against temperature and their derivatives indicate one stage in the thermal decompositions of the complexes Cu(DL-Val)$_2$ and Cu(DL-Met)$_2$.

Copper was obtained as final product at 873 K for Cu(DL-Val)$_2$. Similar behaviour was found for bis-(L-tryptophanato)copper(II) [2]. On the other hand, the final product of Cu(DL-Met)$_2$ at 800 K is not Cu [8].

The shapes of the curve obtained by plotting the degree of decomposition (α) vs. T (K) are different for the two complexes. Cu(DL-Val)$_2$ presents a curve which reflects a large process of acceleration, followed by a short interval of deceleration. For Cu(DL-Met)$_2$ there is scarcely an acceleratory period.

The logarithms of the functions $g(\alpha)$ [3, 4] were plotted vs. $1/T$ (K), it was found that the largest correlation factor in the adjustment to linearity by least squares corresponds to the equation $\alpha^2 = kt$ for Cu(DL-Val)$_2$, which gives a one-dimensional diffusion mechanism as the rate-determining process, and to the second-order equation $\frac{1}{1-\alpha} - 1 = kt$ for Cu(DL-Met)$_2$.

The activation energy for the thermal decomposition was calculated with the formulae:

$$E_1 = -\frac{449 + \tan \beta}{217}$$

$$E_2 = \frac{8 \tan \beta \cdot T_m + (\tan \beta)^2}{(8 \tan \beta \cdot T_m + (\tan \beta)^2)^{1/2} - \tan \beta}$$

where $\tan \beta$ is the slope of the selected linear plot of log $g(\alpha)$ vs. $1/T$ and T_m is the mean temperature.

The results obtained are given in Table 1. For comparative purposes, only the first decomposition step for bis-(L-tryptophanato)copper(II) is included.

The initial temperatures of decomposition indicate that the sequence of thermal stability is:

$$\text{Cu(DL-Val)}_2 < \text{Cu(L-Trp)}_2 < \text{Cu(DL-Met)}_2$$

This sequence does not correspond to the formation constants of the complexes in solution [9].

The lower stability of Cu(DL-Val)$_2$ is probably due to the position of the methyl groups of the ligand. On the other hand, the linear chain of the methionine produces a higher thermal stabilization in the complex, with probable S---Cu interaction at higher temperatures. The decomposition of Cu(L-Trp)$_2$ is more complicated, due to the stability of the indole group.