THERMAL DECOMPOSITION
OF BIS-(DL-VALINATO) COPPER(II)
AND BIS-(DL-METHIONINATO) COPPER(II)*

P. Gili and P. Martin Zarza

DEPARTAMENTO DE QUÍMICA INORGÁNICA, UNIVERSIDAD DE LA LAGUNA,
TENERIFE, CANARY ISLANDS, SPAIN

(Received August 28, 1985)

A kinetic study of the thermal decomposition of the complexes bis-(DL-valinato)copper(II) and bis-(DL-methioninato)copper(II) was carried out using thermogravimetry in a dynamic regime, following the theoretical model of Satava and including the equation used by Johnson and Gallagher:

\[\frac{1}{1 - \alpha} - 1 = kt \]

Kinetic parameters were calculated and are compared with those obtained previously for the complex bis-(L-tryptophanato)copper(II). The sequence of thermal stability found is: \(\text{Cu(DL-Val)}_2 < \text{Cu(L-Trp)}_2 < \text{Cu(DL-Met)}_2 \).

In this work we report for the first time a kinetic study of the thermal decomposition in the solid phase of the complexes bis-(DL-valinato)-copper(II) and bis-(DL-methioninato)copper(II) (abbreviated Cu(DL-Val)_2 and Cu(DL-Met)_2, respectively). This study has been carried out using thermogravimetry in a dynamic regime following the theoretical model of Satava [3] and including the second-order equation

\[\frac{1}{1 - \alpha} - 1 = kt \]

used by Johnson and Gallagher [4].

* Presented at the 1985 World Conference on Thermal Analysis, Bad Hofgastein, Austria.

John Wiley & Sons, Limited, Chichester
Akadémiai Kiadó, Budapest
Results and discussion

The curves of loss of mass against temperature and their derivatives indicate one stage in the thermal decompositions of the complexes Cu(DL-Val)₂ and Cu(DL-Met)₂.

Copper was obtained as final product at 873 K for Cu(DL-Val)₂. Similar behaviour was found for bis-(L-tryptophanato)copper(II) [2]. On the other hand, the final product of Cu(DL-Met)₂ at 800 K is not Cu [8].

The shapes of the curves obtained by plotting the degree of decomposition (\(\alpha\)) vs. \(T\) (K) are different for the two complexes. Cu(DL-Val)₂ presents a curve which reflects a large process of acceleration, followed by a short interval of deceleration. For Cu(DL-Met)₂ there is scarcely an acceleratory period.

The logarithms of the functions \(g(\alpha)\) [3, 4] were plotted vs. \(1/T\) (K), it was found that the largest correlation factor in the adjustment to linearity by least squares corresponds to the equation \(\alpha^2 = kT\) for Cu(DL-Val)₂, which gives a one-dimensional diffusion mechanism as the rate-determining process, and to the second-order equation \(\frac{1}{1-\alpha} - 1 = kt\) for Cu(DL-Met)₂.

The activation energy for the thermal decomposition was calculated with the formulae:

\[
E_1 = -\frac{449 + \tan \beta}{217}
\]

\[
E_2 = \left\{ [8 \tan \beta \cdot T_m + (\tan \beta)^2]^{1/2} - \tan \beta \right\}
\]

where \(\tan \beta\) is the slope of the selected linear plot of \(\log g(\alpha)\) vs. \(1/T\) and \(T_m\) is the mean temperature.

The results obtained are given in Table 1. For comparative purposes, only the first decomposition step for bis-(L-tryptophanato)copper(II) is included.

The initial temperatures of decomposition indicate that the sequence of thermal stability is:

\[\text{Cu(DL-Val)}_2 < \text{Cu(L-Trp)}_2 < \text{Cu(DL-Met)}_2\]

This sequence does not correspond to the formation constants of the complexes in solution [9].

The lower stability of Cu(DL-Val)₂ is probably due to the position of the methyl groups of the ligand. On the other hand, the linear chain of the methionine produces a higher thermal stabilization in the complex, with probable S—Cu interaction at higher temperatures. The decomposition of Cu(L-Trp)₂ is more complicated, due to the stability of the indole group.

J. Thermal Anal. 31, 1986