THERMOGRAVIMETRY. EMPIRICAL APPROXIMATION FOR THE "TEMPERATURE INTEGRALS"*

I. Agherghinei

"PETRU PONI" INSTITUTE OF MACROMOLECULAR CHEMISTRY, 6600 JASSY, ROMANIA

(Received April 18, 1989)

The temperature integrals \(p_m(x) = \int_x^\infty e^{-x u} u^{-2-m} du \) with \(m = 0, 1/2 \) and 1 are approximated using empirical formulae of the type \(Ax^B e^{-Cx} \). For estimation of the precision of these approximations, the relative errors were calculated for integral values of \(x \). It was established that for \(x < 19 \) the maximum relative error is 0.26\%, while for \(19 \leq x \leq 50 \) it is less than 0.1\%. The suggested approximations allow a sensible improvement of the integral methods intended to determine the kinetic parameters of the process concerned.

The temperature integrals are often used in thermogravimetry [1], microcalorimetry [2], thermal absorption [3], thermoluminescence [4], thermally stimulated conductivity (T.S.C.) [5], thermal oxidation [6], etc.

The present paper shows that these functions can be approximated with excellent accuracy within the intervals (5, 17) and (17, 50) by using expressions of the type \(Ax^B e^{-Cx} \).

Kinetics

The thermogravimetric study takes into account the following equation:

\[
\frac{dc}{dt} = ZT^m e^{-E/RT} (1-c)^n
\]

(1)

*This paper was presented at the National Congress of Chemistry, Bucuresti, Sept. 11-14, 1978; in Abstracts, Pt. 1, 151 (1978).
where t is the time, c the conversion, T the absolute temperature (K), E the activation energy (cal.mol$^{-1}$), R the universal gas constant (1.987 cal. mol$^{-1}$deg$^{-1}$) (K)$^{-1}$, n the order of reaction, and Z and m are constants.

The parameter m shows the temperature-dependence of the frequency factor ZT^m. The empirical form of the Arrhenius equation implies that $m = 0$, while the active collision theory admits $m = 1/2$ and the Eyring active complex theory admits $m = 1$.

The present paper takes into consideration all these alternatives, i.e. $m = 0$, $m = 1/2$ and $m = 1$.

Under non-isothermal conditions, when the heating rate $\beta = dT/dt$ is constant, Eq. (1) can readily be integrated, giving

$$\frac{1 - (1 - c)^{1-n}}{1-n} = \frac{Z}{\beta} \left(\frac{E}{R} \right)^{m+1} p_m(x)$$

where

$$x = \frac{E}{RT} ; \ p_m(x) = \int e^{-u} u^{-2-m} \ du, \ \text{with} \ \ m = 0, 1/2 \ \text{and} \ 1.$$

The $p_m(x)$ integrals will be called "the temperature integrals". The numerical values of these functions have been calculated by Vallet [7] (we have not been able to acquire his paper), Biergen and Czanderna [8], and Saint-Georges and Garnaud [9]. Since the table given for these functions in [8, 9] were incomplete, we decided to complete them new values.

With a view to calculating the $p_0(x)$ and $p_1(x)$ functions, we used the following relationships:

$$p_0(x) = \frac{1}{2} \left[e^{-x} x^{-2} - p_0(x) \right]$$

$$p_1(x) = e^{-x} x^{-1} + Ei(-x)$$

The values of the exponential integrals $Ei(-x)$ were taken from [10]. For the function $p_{1/2}(x)$ only the values tabulated by Saint-Georges and Garnaud [9] were taken into account.

The approximations for the temperature integrals

The function $p_0(x)$ is frequently used in thermogravimetry. It was called "the temperature integral" by MacCallum and Tanner [11]. In most cases, the functions proposed to approximate this integral have the form

J. Thermal Anal., 36, 1990