MAXIMAL SUBGROUPS OF THE ORTHOGONAL GROUP

Stephen Pierce *)

Let V be an n-dimensional regular quadratic space over a field K of characteristic not 2. Assume $n \geq 4$. Let W be a regular hyperplane and v a nonzero vector orthogonal to W. Suppose every regular hyperplane in W is universal. If σ is an isometry of V not leaving W invariant, then σ, together with the isometries of W, generate the orthogonal group of V, with one exception.

Let V be a vector space over a field K of characteristic not 2. Equip V with a symmetric, regular bilinear form $B(x,y)$, that is $B(x,V) = 0$ only if $x = 0$. We write $B(x,y) = (x,y)$ and set $Q(x) = (x,x)$. Any σ in $\text{End} \ V$ satisfying $Q(\sigma x) = Q(x)$ for all x is an isometry of V and the group of all isometries is written $O(V)$. Let $K^* = K\setminus\{0\}$ and write dV for the discriminant of V as a member of K^*/K^{*2}. For a subset S of V, let $\langle S \rangle$ be the linear span of S and for a subset S of $O(V)$, let $\langle S \rangle$ be the subgroup generated by S. A nonzero vector x in V is isotropic if $Q(x) = 0$ and a subspace W of V is isotropic if W has an isotropic vector. If every nonzero vector in W is isotropic, W is totally

*) The work of the author was partially supported by NSERC Grant A-7862.
isotropic. The index or Witt index of V is the dimension of a maximal totally isotropic subspace. Put W^\perp for the orthogonal compliment of W and $O(W)$ the isometries of V which fix W^\perp pointwise. If W is regular, we say W is universal if every α in K^* is $Q(w)$ for some w in W. If $Q(x) \neq 0$, let τ_x be the symmetry in $O(V)$ mapping x to $-x$. If E is a basis of V and $\sigma \in O(V)$, $[\sigma]_E$ is the matrix representation of σ. Use [1] or [5] to reference terminology.

In preparing a recent paper [6] Watkins and the author needed to answer a question about generating $O(V)$. We proved the following result.

Theorem. Let V be a regular quadratic space of dimension $n \geq 4$ over a field K of characteristic not 2. Let W be a regular hyperplane in V such that every regular hyperplane in W is isotropic. Pick σ in $O(V)$ such that $\sigma W \neq W$. Then $\langle O(W), \sigma \rangle = O(V)$.

It is the purpose of this paper to expand on this idea by relaxing the conditions on W. It is well known that $O(V)$ is generated by symmetries [5] and there is plenty of literature on generating questions in classical groups; see, for example, [2], [3], [4]. We particularly cite the work of Wong, [7], [8], who examined generation of classical groups by certain subgroups.

If W is a regular hyperplane in V and $\sigma \in O(V)$ with $\sigma W \neq W$, put $G = \langle O(W), \sigma \rangle$. Our results give some sufficient conditions for G to be $O(V)$, but first we give two examples to show that G can sometimes be a proper subgroup.

Example A. Let $V = \mathbb{R}^n$, $n \geq 2$, and let $\{e_1, \ldots, e_n\}$ be the standard basis of V. Put $W = \langle e_2, \ldots, e_n \rangle$ and define $Q(x) = -x_2^2 + x_2^2 + \cdots + x_n^2$. Choose z in $V \setminus W$ such that $Q(z) > 0$, and let $\sigma = \tau_z$. Then $G = \langle O(W), \sigma \rangle$ is in the kernel of the spinor norm on $O(V)$, but V is isotropic, so the spinor norm is surjective. Thus $G \neq O(V)$.

Example A suggests that we should at least assume W is