The Strong Semantics for Logic Programs

JIANHUA CHEN jianhua@bit.csc.lsu.edu
SUKHAMAY KUNDU kundu@bit.csc.lsu.edu
Computer Science Department, Louisiana State University Baton Rouge, LA 70803, USA

Abstract. Recently, the well-founded semantics of a logic program \(P \) has been strengthened to the well-founded semantics-by-case (WFc) and this in turn has been strengthened to the extended well-founded semantics (WFE). Both \(\text{WF}_C(P) \) and \(\text{WF}_E(P) \) have the logical consequence property, namely, if an atom \(A_j \) is true in the theory \(\text{Th}(P) \), then \(A_j \) is true in the semantics as well. However, neither \(\text{WF}_C \) nor \(\text{WF}_E \) has the GCWA property, i.e., if an atom \(A_j \) is false in all minimal models of \(P \), \(A_j \) may not be false in \(\text{WF}_C(P) \) (resp. \(\text{WF}_E(P) \)). We extend the ideas in \(\text{WF}_C \) and \(\text{WF}_E \) to define a strong well-founded semantics \(\text{WF}_S \) which has the GCWA property. The strong semantics \(\text{WF}_S(P) \) is defined by combining GCWA with the notion of derived rules. Here we use a new Type-III derived rules in addition to those used in \(\text{WF}_C \) and \(\text{WF}_E \). The relationship between \(\text{WF}_S \) and \(\text{WF}_C \) is also clarified.

Keywords: logic program, declarative semantics, GCWA-property, derived rules

1. Introduction

This paper is an extended version of (Chen and Kundu, 1991). We assume throughout that the logic program \(P \) is propositional, i.e., it does not contain predicates and variables. The general approach in defining a declarative (model based) semantics of a logic program \(P \) consists of the following two steps. We write \(\Delta(P) = \{ \text{clause}(p) : p \in P \} \), where \(\text{clause}(p) \) denotes the clause from of \(p \) (e.g., if \(p: "a \leftarrow b, \neg c" \), then \(\text{clause}(p) = a \lor \neg b \lor c \)). Also, we use the short notation \(\text{Th}(P) \) for \(\text{Th}(\Delta(P)) \); similarly, \(\text{CIRC}[P] \) for the circumscription of \(\Delta(P) \), \(\text{MM}(P) \) for the minimal models of \(\Delta(P) \), etc. Note that \(\text{CIRC}[P] \) is independent of the syntactic structure of the rules in \(P \). The models of \(\text{CIRC}[P] \) are precisely \(\text{MM}(P) \).

(1) Define a preference criterion (a partial order) among the propositions in \(P \) using the syntactic structure of the rules in \(P \) and perhaps some information from \(\text{CIRC}[P] \). This in turn gives rise to a preference criterion among the minimal models of \(\Delta(P) \). (The preference criterion may be defined by an iterative process; e.g., as in the case of stratified logic programs.)

(2) Define the semantics of \(P \) to be the set of most preferred minimal models of \(P \) (or, equivalently, the set of formulas which are satisfied by each preferred model) according to the preference criterion in (1). A proposition (or, more generally, a formula) is then defined to be true in \(P \) if any only if it is true in each preferred minimal model.

Since the preferred minimal models usually form a proper subset of \(\text{MM}(P) \), they define a stronger semantics of \(P \) than that given by \(\text{CIRC}[P] \). The distinctions among various declarative semantics arises in two ways: (i) use of different amount of information from \(\text{CIRC}[P] \) (for simplifying the rules in \(P \) and perhaps eliminating some of those rules), and (ii) use of different preference criterion in (1). The preferred minimal models often equal, or are closely related to, the models of a prioritized circumscription of \(\Delta(P) \), depending on the type of rule simplifications and rule eliminations used.
We say a semantics Σ_1 for logic programs is stronger (tighter or more refined) than another semantics Σ_2, denoted by $\Sigma_1 \triangleright= \Sigma_2$, if for all P we have $\Sigma_1(P) \triangleright= \Sigma_2(P)$, with inequality for some P, where $\Sigma_j(P)$ denotes the set of formulas which are true in P for the semantics Σ_j. Ideally, one would like to define the preference criterion in (1) in such a way that there is a unique preferred model because in that case the resulting semantics Σ has the property that for each proposition p, either $p \in \Sigma$ or $\neg p \in \Sigma$ and hence one can easily determine if a goal is true or false in Σ. Unfortunately, it is not always possible to define such a preference criterion that is also intuitively appealing. The (weakly) stratified programs, or more generally, the well-founded programs are but few cases which results in a unique preferred minimal model. (By a well-founded program P, we mean a definite program P for which the well-founded semantics, WF-semantics in short, defines a complete 2-valued model. In general, the WF-semantics (Van Gelder, Ross and Schlipf, 1991) defines only a partial model.)

Unless stated otherwise, a semantics $\Sigma(P)$ will consists of a set of positive and negative literals which are true in each preferred minimal model. (In particular, it may define only a partial model of P.)

For the program $P_1 = \{a \leftarrow b, a \leftarrow \neg b, b \leftarrow \neg a\}$, we have $a = \text{true} = \neg b$ is the unique minimal model of $\Delta(P_1)$ and thus it should also be the preferred model. However, the WF-semantics of P_1 is given by $WF(P_1) = \emptyset$, i.e., none of a and b is assigned a true/false value. This shortcoming of WF-semantics is caused by the fact that it makes use of only a limited (literal level) information from $\text{CIRC}[P]$.

The WF-semantics-by-case (WF$_C$-semantics, in short), defined by Schlipf (1990), is known to be stronger than the WF-semantics and partially alleviates the above limitation of WF-semantics. It has the logical consequence property that if an atom $p \in \text{CIRC}[P]$, or equivalently, $p \in \Delta(P)$, then $p = \text{true}$ in WF$_C(P)$. The WF$_C$-semantics accomplishes this property by using the notion of derived rules, which essentially provide a representation of certain clauses in $\text{Th}(P)$ in the form of rules. (Some of those clauses may not be in $\Delta(P)$ and even if they are in $\Delta(P)$ the derived rules may give alternate representations for them.) In particular, all atomic clauses in $\text{Th}(P)$ are represented in this way and this gives rise to the property stated above. For the program P_1 above, we have $WF_C(P_1) = \{a, \neg b\} \triangleright= WF(P_1)$. The WF$_C$-semantics does not, however, have a similar property for the negative literals: if $\neg p = \text{true}$ in $\text{CIRC}[P]$, then $\neg p = \text{true}$ in $WF_C(P)$. This property is called the generalized closed world assumption property, in short, the GCWA-property.

The extended well-founded semantics (WF$_E$-semantics, in short), defined by Hu and Yuan (1991), is known to be stronger than the WF$_C$-semantics and partially alleviates the above limitation of WF$_C$-semantics. It uses the same derived rules as in the WF$_C$-semantics, but it uses a more general criterion to assign the false value to an atom and this makes it stronger than the WF$_C$-semantics. For the program $P_2 = \{a \leftarrow c, b \leftarrow \neg d, c \leftarrow \neg b, \neg d, d \leftarrow \neg a\}$, we have $WF_E(P_2) = \emptyset = WF_C(P_2) = WF(P_2)$ although $\neg c = \text{true}$ in $\text{CIRC}[P_2]$. One reason that WF$_C(P_2)$ fails to assign $\neg c = \text{true}$ is that it does not recognize that the only rule $c \leftarrow \neg b, \neg d$ for c (there being no other derived rule for c) does not correspond to a minimal positive clause in $\text{Th}(P_2)$. Note that $\neg c = \text{true}$ in $\text{CIRC}[P_2]$ if and only if there is no minimal positive clause in $\text{Th}(P_2)$ involving c. Our newly defined strong semantics for P_2 first assigns $\neg c = \text{true}$ on the basis that the atom c is not part of any minimal positive clause in $\text{Th}(P)$, and hence it recognizes that $\neg c = \text{true}$ in $\text{CIRC}[P_2]$. This in turn gives $\neg a = \text{true} = d = \neg b$. To find all minimal positive clauses in $\text{Th}(P)$, it is sufficient to consider a new type of derived rules, called Type-III, in addition to the derived