Part II

NUMERICAL MATHEMATICS
COMPONENT-WISE PERTURBATION ANALYSIS AND ERROR BOUNDS FOR LINEAR LEAST SQUARES SOLUTIONS

Å. BJÖRCK
Department of Mathematics, Linköping University, S-581 83 Linköping, Sweden.

Abstract.

Perturbation bounds for the linear least squares problem \(\min_x \| Ax - b \|_2 \) corresponding to component-wise perturbations in the data are derived. These bounds can be computed using a method of Hager and are often much better than the bounds derived from the standard perturbation analysis. In particular this is true for problems where the rows of \(A \) are of widely different magnitudes. Generalizing a result by Oettli and Prager, we can use the bounds to compute a posteriori error bounds for computed least squares solutions.

AMS Classification: 65F20, 65G05.

Key words: Least squares, condition number, component-wise backward error.

1. Introduction.

Consider the linear least squares problem

\[
(1.1) \quad \min_x \| Ax - b \|_2, \quad A \in \mathbb{R}^{m \times n}, \quad m \geq n,
\]

where, in order to avoid discussing subtle questions related to rank deficient problems, we assume that rank \((A) = n \).

Let \(\bar{x} \) be an approximate solution to (1.1), and assume that \(\delta A \) and \(\delta b \) are perturbations such that \(\bar{x} \) is the exact solution to the perturbed problem

\[
(1.2) \quad \min_x \| (A + \delta A)\bar{x} - (b + \delta b) \|_2,
\]

and

\[
(1.3) \quad \| \delta A \|_2 \leq \varepsilon_A \| A \|_2, \quad \| \delta b \|_2 \leq \varepsilon_b \| b \|_2.
\]

Then the norm of the error \(\delta x = \bar{x} - x \) can be bounded using standard perturbation results. Let \(A^+ \) denote the pseudoinverse of \(A \) and \(\kappa_2 = \| A^+ \|_2 \| A \|_2 \) the condi-