A CRITERION FOR TRUNCATION OF
THE QR-DECOMPOSITION ALGORITHM FOR
THE SINGULAR LINEAR LEAST
SQUARES PROBLEM

ILKKA KARASALO

Abstract.
A possible improvement of the Faddeev-Kublanovskaja-Faddeeva lower bound for the least singular value of \(R \) by using additional information about \(R \) is discussed. A fast algorithm is given for calculating such a bound using the diagonal elements and the elements of largest modulus in each row of \(R \).

1. Introduction.

The truncated QR-decomposition algorithm is an often used technique [1, 2] for the singular linear least squares problem:
Find the \(x \in \mathbb{R}^n \) with the smallest \(l_2 \) norm, \(\|x\|_2 \), that minimizes
\[
\|Ax - b\|_2
\]
where
\(A \) is \(m \times n \), \(\text{rank}(A) = k < n \) and \(b \in \mathbb{R}^m \).

One numerically stable algorithm for the QR-decomposition of \(A \) is the modified Gram-Schmidt orthogonalization [3] combined with column pivoting. With exact arithmetic, \(p \) steps of this algorithm will give the matrices \(Q_p, R_p \) and \(E_p \) in:
\[
AP = Q_pR_p + E_p
\]
where
\(Q_p \) is an \(m \times p \) matrix with orthonormal columns,
\(R_p \) is a \(p \times n \) matrix, upper triangular in the first \(p \) columns,
\(E_p \) is an \(m \times n \) matrix with the first \(p \) columns zero and the last \(n - p \) columns orthogonal to the columns of \(Q_p \),
and \(P \) is an \(n \times n \) permutation matrix.

In the sequel we assume that \(P \) is chosen so that for every \(p \), the last column of \(Q_{p+1} \) is parallel to the column with largest \(l_2 \) norm in

Received Sept. 11, 1973.
This way of choosing P is referred to as the normalized column pivoting strategy.

Since \(\text{rank}(A) = k < n \) we have, with exact arithmetic, \(E_k = 0 \). The exact solution of (1.1) is then given by

\[
(1.3) \quad x = P^T(Q_kR_k)^+b
\]

where \(M^+ \) denotes the Moore-Penrose pseudoinverse of the matrix \(M \).

Wilkinson ([4], p. 160, 236) has shown that the effect of rounding errors can be introduced in the formula (1.2) by

\[
(1.4) \quad (A + G_p)P = Q_pR_p + E_p.
\]

\(R_p \) and essentially \(E_p \) are known from the computations, \(Q_p \) is the matrix in (1.2) and \(G_p \) can be bounded a priori

\[
(1.5) \quad \| G_p \|_E \leq \gamma 2^{-t} \| A \|_E.
\]

Here \(\gamma \) is a small constant which depends on details of the algorithm and the rounding process and \(t \) is the number of bits after the binary point in the computer word.

In practice, the rank of \(A \) may not be known in advance. In such cases it is sometimes appropriate to approximate \(A \) with a matrix of rank \(k_0 \) where \(k_0 \) is determined from

\[
(1.6) \quad \sigma_{k_0}(A) > \varepsilon \geq \sigma_{k_0+1}(A)
\]

where \(\varepsilon \) is a small positive number. (We assume the singular values to be ordered so that \(\sigma_i \leq \sigma_j, \, i > j \)). With this approach it is well known that "rank overestimation", i.e. choice of \(k_0 \) too large, will introduce a risk of obtaining a completely unreasonable solution [2]. Thus, strict but reasonably sharp lower bounds for \(\sigma_p(A), \, p=1,2,\ldots \) are required for a good choice of \(k_0 \) using (1.6). Such lower bounds can be obtained from

\[
(1.7) \quad \sigma_p(A) + \| G_p \|_E \geq \sigma_p(Q_pR_p + E_p) \geq \sigma_p(R_p).
\]

The last inequality is seen to hold by putting \(\sigma_p(Q_pR_p + E_p) = \sigma_p(R_p^TQ_p^T + E_p^T) \) and making the maximization in the Courant - Fischer theorem ([4], p. 101) in the orthogonal complement of the space spanned by the columns of \(E_p \). Unfortunately, calculation of \(\sigma_p(R_p), \, p=1,2,\ldots \) will require too much work to justify the use of \(QR \)-decomposition on (1.1) instead of complete singular value decomposition. In this situation, then, one would like to be able to give reasonably sharp lower bounds for \(\sigma_p(R_p) \) in each \(QR \)-step using the information available about \(R_p \) at a computational cost which is insignificant compared with that required for one \(QR \)-step.