APPROXIMATION BY NON-NEGATIVE
ALGEBRAIC POLYNOMIALS

M. M. CHAWLA

Abstract.

Theorem 1 gives an estimate for the approximation of a continuous function f by polynomials resulting from the convolution of f with non-negative algebraic polynomials p_n. Jackson's theorem can be deduced from it by choosing a particular p_n whose second Chebyshev–Fourier coefficient is sufficiently close to -1.

The classical theorem of Jackson [1, p. 15] states that if $f \in C[a,b]$ and $u_f(\delta)$ is its modulus of continuity, then for each positive integer n there is an algebraic polynomial $p_n \in \mathcal{P}_n$ (the class of all polynomials of degree $\leq n$) such that, in the uniform norm,

$$\|f - p_n\| \leq C u_f(1/n)$$

where C is a constant independent of f and n. DeVore [2] has given a direct proof of (1), by considering convolution of f with non-negative algebraic polynomials. Though the approximating polynomial is of degree $4n-4$, his value of C is much larger than that indicated by the usual trigonometric polynomial approach, viz., $C = 1 + \pi^2/2 < 6$; see, for example, Rivlin [3], pp. 21–22. Moreover, his proof makes use of the order of approximation obtained in the approximation of functions of class Lip 1 ([2], Proposition 1). More recently, Bojanic and DeVore [4] have given a similar proof which is essentially based on the result of Shisha and Mond [5] on the order of convergence of linear positive operators.

The purpose of the present paper is to give a simple proof based on more elementary arguments.

Let $p_n(x) \in \mathcal{P}_n$ be such that $p_n(x) = p_n(-x)$ and $p_n(x) \geq 0$ on $[-1,1]$. If

$$\int_{-1}^{1} p_n(x) dx = c_n, \quad c_n > 0$$

Received April 2, 1970.

1 Work supported in part by the Atomic Energy Commission under contract U.S. AEC AT (11-1) 1469, and in part by the National Science Foundation under grant NSF–GJ–812.
set \(P_n(x) = (1/c_n)p_n(x) \) and define \(L_n(f; p_n; x) \in P_n \) by

\[
L_n(f; p_n; x) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)P_n(t-x)\,dt
\]

(it will be assumed throughout in the following that \(n \) is a positive even integer). If \(T_n(x) = \cos(n \arccos x) \) denotes the Chebyshev polynomial of degree \(n \) on \([-1, 1]\) then we may write

\[
p_n(x) = \sum_{k=0}^{n/2} c_{n,k}T_k(x).
\]

Our main result is

Theorem 1. If \(f \in C[-\frac{1}{2}, \frac{1}{2}] \) and \(f(-\frac{1}{2}) = f(\frac{1}{2}) = 0 \), then for \(L_n(f; p_n; x) \in P_n \) defined by (2) and for every positive integer \(m \),

\[
||f(x) - L_n(f; p_n; x)|| \leq w_f(1/m)(\frac{3}{2} + m \cdot \beta_n)
\]

where

\[
\beta_n^2 = (1 + c_{n,1})(1 - c_{n,1})
\]

The proof is based on the following

Lemma 1. Let \(f \) satisfy the conditions of Theorem 1. Let \(V(x) \) denote the total variation of \(\alpha(x) \), and let \(|\alpha(x)| \) be monotonically increasing on \([-\frac{1}{2}, \frac{1}{2}]\). Then for every positive integer \(m \),

\[
\left| \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)\,d\alpha(x) \right| \leq w_f(1/m) \left(V(\alpha) + m \cdot \int_{-\frac{1}{2}}^{\frac{1}{2}} |\alpha(x)|\,dx \right).
\]

Proof. For a positive integer \(m \), consider the partition of \([-\frac{1}{2}, \frac{1}{2}]\) by the points \(x_k = -\frac{1}{2} + k/m, \ k = 0(1)m. \) Define

\[
R_m^+(f; \alpha) = \sum_{k=1}^{m} f(x_k)\Delta \alpha_k, \quad \Delta \alpha_k = \alpha(x_k) - \alpha(x_{k-1}).
\]

Since \(\alpha(x) \in BV[-\frac{1}{2}, \frac{1}{2}] \), \(\int_{x_{k-1}}^{x_k} d\alpha(x) = \Delta \alpha_k, \ k = 1(1)m \), therefore

\[
\left| \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)\,d\alpha(x) - R_m^+(f; \alpha) \right| = \left| \sum_{k=1}^{m} \int_{x_{k-1}}^{x_k} (f(x) - f(x_k))\,d\alpha(x) \right| \leq w_f(1/m)V(\alpha)
\]

since \(\int_{-\frac{1}{2}}^{\frac{1}{2}} d\alpha(x) = V(\alpha) \). Thus