STRICT ESTIMATION OF
THE MAXIMUM OF A FUNCTION OF ONE VARIABLE

TORSTEN STRÖM

Abstract.
We describe an algorithm for the strict estimation of \(\max_{x \in I} f(x) \) when \(f \) is analytic on \(I \). If roundoff is neglected the error bound can be made arbitrarily small by an adaptive implementation. A majorant concept is utilized and an Algol program is given. Finally we outline the special application to the strict estimation of the range of a polynomial without any determination of the zeros of the derivative.

Keywords: Optimization, Maximization, Error Bound, Range Determination.

Introduction.
In some situations a demand for strictness in an estimate may dominate over the accuracy requirements, at least in the sense that one is willing to accept a greater amount of work for a given strict bound on the error. A non-trivial problem of this type appears when we are given an approximate solution of a system of ordinary differential equations and wish to estimate the local error strictly. Given the norm in which we compute the error this becomes a problem of estimating the maximum of the absolute value of a function in one variable over an interval (Ström [6]). We believe that the desire for strictness is recognized in several situations. Of course strictness should be obtained in a global sense, i.e. we must not get trapped in a local maximum. Local properties, however, may be used as guidelines and one possible approach is to utilize the positions of zeros of \(f' \). We will take a different attitude and use a majorant concept which in a general case is not trivial but in many cases simply mechanizable.

There exist a number of methods for the efficient determination of \(\max_{x \in I} f(x) \). In fact this is often regarded as a fairly trivial special case of optimization of functions of several variables. To the best of our knowledge, however, few methods claim to work with guaranteed error bounds. Also the local-global dilemma is generally not eliminated. A notable exception is the scheme originally proposed by Moore [4] utilizing the technique of interval arithmetic. Recent work (Dussell [3]) counter-
shows how these fundamental ideas can be implemented to provide completely rigorous bounds if interval arithmetic is applied also on the roundoff level. In fact a programming language containing interval numbers such as Triplex-Algol 60 (Apostolatos [1]), would cope perfectly with the problems of roundoff also in our scheme. We will essentially neglect roundoff in the following. We also assume that f is majorizable in our sense (Ström [5]), i.e. that an absolutely (or completely) monotonic function F exists such that $F \pm f$ are again absolutely (completely) monotonic. (A function F is absolutely (completely) monotonic on I if $F^{(v)}(x) \geq 0 \ ((-1)^v F^{(v)}(x) \geq 0)$ for $x \in I$ and $v = 0, 1, \ldots$). Ström [5] discusses how such an F may be automatically and efficiently constructed by a computer when f is composed of elementary functions. Dahlquist [2] outlined the general idea of our scheme in a particular application. This is a modified and more complete treatment.

Basic Algorithm.

The fundamental observation is almost trivial and we quote it as a theorem from Dahlquist [2] without proof.

Theorem 1. Let $x_0 < x_1 < \ldots < x_n$ be $m+1$ distinct points in $I = [x_0, x_m]$. Assume that $G^{(m)}(x)$ is of constant sign in I. Let $L(\varphi;G,x)$ be the value in x of the unique polynomial of degree $\leq p-\varphi$ interpolating to G in the points x_0, x_1, \ldots, x_n. Then, for $x \in I$,

$$L_{0}^{m-1}(G, x) \leq G(x) \leq L_{1}^{m}(G, x)$$

(or reversed inequalities).

We will subsequently use the notations

$$A_0^{m}(G, x) = \frac{1}{2}(L_0^{m-1}(G, x) + L_1^{m}(G, x))$$

and

$$E_0^{m}(G, x) = \frac{1}{2}(L_1^{m}(G, x) - L_0^{m-1}(G, x)).$$

Now let f be a given function majorized by F on I. Then (Dahlquist [2] or Ström [5])

$$|f(x) - A_0^{m}(f, x)| \leq E_0^{m}(F, x).$$

(1)

Let $x_i, i = 0(1)m$, be equidistant. It is a matter of simple algebra to show that for any function g with $g_i = g(x_i)$

$$|E_0^{m}(g, x)| \leq \frac{1}{2}|\Delta^ng_0|$$

(2)