insulin enhanced its glucose uptake. The receptors of \textit{Tetrahymena} are specific enough to differentiate a given hormone from close chemical derivatives. Peptide hormones operate mainly via the cyclic AMP-adenylcyclase system, which seems to be present in all living beings. Evidence of the role of cAMP in \textit{Tetrahymena} has been presented by Wolfe, Rothstein and Blum, as well as by Csaba et al., but while the latter authors believe it to act as a second messenger, Wolfe does not. Another matter of controversy has been the precise role of cyclic 3',5'-adenosine monophosphate diesterase (cPDE) at the lower levels of phylogenesis, which is not well documented.

In the present experiments, the phagocytic response of \textit{Tetrahymena} to agents that affect the intracellular level of cAMP was tested. Dibutyryl cAMP is known to be a highly active cAMP derivative, particularly suited for the experimental study of cAMP action; theophylline is the most active methylxantine inhibitor of cPDE, and histamine acts on \textit{Tetrahymena} through its membrane receptors, without entering into the cell, as shown previously in this laboratory.

A \textit{Tetrahymena pyriformis} GL culture grown in 1% Bacto trypton (Difco, Michigan, USA) and 0.05% yeast extract for 2 days at 25°C was used. 24 h before the experiment the \textit{Tetrahymena} were isolated from the medium by centrifugation and rendered vacuole-free by incubation in \textit{Losina-Losinsky}’s solution. The following treatments were carried out: 3 or 10 min exposure to cAMP (N4, O'-dibutyryl adenosine 3',5'-cyclic monophosphate Na; Aldrich, Brussels, Belgium); 3 or 10 min exposure to theophylline (Richter, Budapest); 3 or 10 min theophylline treatment followed by 3-min histamine treatment (Reanal, Budapest); no treatment (control series). The concentration range of the test materials was 10^{-4} to 10^{-10} M. After pretreatment, Chinese ink diluted in \textit{Losina-Losinsky} solution, was added to the \textit{Tetrahymena} lots; after 3 min smears were prepared and were dried rapidly. Each concentration of the applied test materials was tested in 3 replicas in each series and vacuole counts were always determined in 100 animals. The means calculated from readings on 500 protozoa at each concentration level per group were related to the corresponding control reading as 100 to obtain the phagocyte coefficient.

The experimental results are shown in the Figure. Although the 3-min dibutyl cAMP treatment had little effect, 10-min treatment was sufficient for the development of an action of similar degree to hormonal influence. Theophylline increased the phagocytotic capacity of \textit{Tetrahymena}, but in a lesser degree than cAMP. Its effect greatly depended on the time of treatment, as did the action of cAMP. The phagocyte coefficient obtained on subsequent 3-min exposures to theophylline and histamine did not exceed the value obtained on treatment with histamine alone in earlier studies, whereas 3-min exposure to histamine following upon 10-min treatment with theophylline enhanced the phagocytotic activity of \textit{Tetrahymena} to a greater degree than any other treatment.

Accordingly, the present findings support the conclusion that the cAMP-adenylcyclase-cPDE system functions in \textit{Tetrahymena}. Another important information emerging from this study is the decisive role of the time factor, the disregard of which can well account for the contradictory results of earlier experimental studies on hormonal regulation in unicellular animals.

Effect of different combinations of cAMP and theophylline on the phagocyte coefficient of \textit{Tetrahymena}.

A. \textit{Tetrahymena} 3 min. ~ \textit{cAMP} 3 min. ~ \textit{theophylline} 3 min. ~ \textit{histamine} 3 min. ~ \textit{theophylline} 10 min. + \textit{histamine} 10 min.

Cellular Control of the Tick-Borne Virus Antigen Production in Persistently Infected Cell Culture

Yu. S. BORISKIN and N. N. BOGOMOLOVA
Moscow Institute for Viral Preparations, 1st Dubrovskaya Street, 15 Moskwa 109088 (USSR), 19 September 1975.

Summary. The influence of inhibition or stimulation of cellular DNA synthesis on tick-borne virus antigen production in persistently infected cell culture was studied. Either mitomycin C or cytosine-arabinoside caused cessation of antigen-containing cell number increase. Inhibition of cellular DNA synthesis by growth medium change increased the level of antigen-containing cells. When HEp-2-Sof culture was synchronized, a correlation was observed between the entrance of cells into DNA synthesis phase and the increase of proportion of antigen-containing cells.

Persistent infection of HEp-2 cell culture by tick-borne encephalitis virus (TBEV), designated as HEp-2-Sof, has been under study for about 15 years. Some recent findings strongly suggested the participation of cellular genome in the status of chronic infection in this system, namely, 1. stimulation of viral antigen production by 5-bromodeoxyuridine, 2. infectious properties of cellular DNA and detection of virus-specific sequences in nuclear DNA by molecular hybridization experiments, 3. the lack of DNA excision repair in HEp-2-Sof cells.
Among the most characteristic features which HEp-2-Sof system preserves during its existence, there is continuous production of virus-specific antigen as revealed by immunofluorescence (IF) technique in a fraction of cells. The level of IF-positive cells is not constant and fluctuates from 5–100% to 30–40%. Occasionally we observed both periods of complete absence of IF-positive cells and periods of IF ‘exaltation’, when the proportion of IF-positive cells reached 50–60%. Cloning experiments performed in the course of this study have revealed viral antigen producing (IF-positive) and non-producing (IF-negative) clones. IF-positive clones appeared to be resistant to superinfection with homologous virus, whereas IF-negative ones were sensitive to re-infection with TBV.

In this report, we describe the effect of DNA inhibitors, and procedures affecting the rate of DNA synthesis, on viral antigen production in HEp-2-Sof culture. HEp-2-Sof cells were seeded in tubes with coverslips at a concentration of 1 x 10^6 cells/ml; 24 h later, the growth medium was replaced by the one containing 5 μg/ml mitomycin C (MC) or 10 μg/ml cytosine-arabinoside (Ara-C). Every 24 h after addition of the chemical, the number of viable (stained with neutral red) cells, incorporation of [H]-thymidine (2 μCi/ml, specific activity 52 mCi/mmol, 30 min) into acid-insoluble material and percentage of IF-positive cells was determined simultaneously in triplicate samples for each time interval.

MC almost completely inhibited DNA synthesis and cell proliferation after 24 h exposure to the drug, and also blocked the increase of IF-positive cell number. Similarly, Ara-C markedly reduced the rate of DNA synthesis, cell number and the proportion of IF-positive cells as compared with control untreated cultures. Neither MC, nor Ara-C have affected the kinetics of IF-positive cell increase when HEp-2 cells were primarily infected with TBV and incubated at input multiplicity of 10 TCID_{50}/cell.

Another kind of experiment, avoiding the use of chemicals, has been performed in order to determine whether the increase of IF-positive cells in HEp-2-Sof culture was due to proliferation of IF-positive parental cells or, more probably, to the events localized in interphase, presumably in S-period. HEp-2-Sof cells were seeded into tubes containing coverslips of equal size at a concentration 5 x 10^4/2 ml. 48 h later, when cells had reached confluence and the level of DNA synthesis became constant, the growth medium was replaced by a fresh one, and, at appropriate time intervals, coverslip cultures were taken for IF test after prelabelling of cells with 2 μCi/ml of [H]-thymidine for 30 min. When the percentage of IF-positive cells was counted, cells from the same coverslips were mechanically scrapped and isotope incorporation into acid-insoluble material was measured. Simultaneously the total number of trypan blue excluded cells or, more probably, to the events localized in interphase, presumably in S-period. HEp-2-Sof cells were seeded into tubes containing coverslips of equal size at a concentration 5 x 10^4/2 ml. 48 h later, when cells had reached confluence and the level of DNA synthesis became constant, the growth medium was replaced by a fresh one, and, at appropriate time intervals, coverslip cultures were taken for IF test after prelabelling of cells with 2 μCi/ml of [H]-thymidine for 30 min. When the percentage of IF-positive cells was counted, cells from the same coverslips were mechanically scrapped and isotope incorporation into acid-insoluble material was measured. Simultaneously the total number of trypan blue excluded cells were scored in parallel cultures. Figure 1 shows that growth medium change has stimulated HEp-2-Sof DNA synthesis and concomitantly increased the proportion of IF-positive cells, whereas total cell number has not significantly changed. When HEp-2 coverslips confluent monolayers, stimulated to DNA synthesis, were infected with a virus, the level of IF-positive cells became dependent on the growth medium change.

Fig. 1. Growth medium change-stimulated increase of DNA synthesis rate (A) and IF-positive cell number increase (B) in HEp-2-Sof culture. O—O, DNA synthesis rate without stimulation; O—O, DNA synthesis rate after stimulation; □—□, % IF-positive cells without stimulation; ■—■, % IF-positive cells after stimulation; △—△, total cell number before and after stimulation. Each point represents the mean of 3 parallel measurements. An arrow indicates the moment of growth medium change.

Fig. 2. The pattern of growth of HEp-2-Sof cells, synchronized by double thymidine block (A) and the influence of cell synchrony on the proportion of IF-positive cells (B). O—O, % cells labeled in synchronized culture; △—△, % cells labeled in asynchronous culture; □—□, % metaphase index in synchronized culture; △—△, % IF-positive cells in synchronized culture; □—□, % IF-positive cells in asynchronous culture. Each point represents the mean of 3 parallel measurements.