The Local Structure of the Spectrum of the One-Dimensional Schrödinger Operator

S. A. Molčanov
Department of Mathematics, Moscow State University, Moscow U-234, USSR

Abstract. Let $H_{V} = -\frac{d^{2}}{dt^{2}} + q(t, \omega)$ be an one-dimensional random Schrödinger operator in $\mathcal{L}^{2}(-V, V)$ with the classical boundary conditions. The random potential $q(t, \omega)$ has a form $q(t, \omega) = F(x_{i})$, where x_{i} is a Brownian motion on the compact Riemannian manifold K and $F : K \to \mathbb{R}$ is a smooth Morse function, $\min F = 0$. Let $N_{V}(\lambda) = \sum_{\lambda \in \mathcal{E}_{V}} 1$, where $\mathcal{E} \subset (0, \infty)$, \mathcal{E}_{V} are the eigenvalues of H_{V}. The main result (Theorem 1) of this paper is the following. If $V \to \infty$, $E_{0} > 0$, $k \in \mathbb{Z}$, and $a > 0$ (a is a fixed constant) then

$$\lim_{V \to \infty} n(E_{0}) = k$$

where $n(E_{0})$ is a limit state density of H_{V}, $V \to \infty$. This theorem mean that there is no repulsion between energy levels of the operator H_{V}, $V \to \infty$.

The second result (Theorem 2) describes the phenomenon of the repulsion of the corresponding wave functions.

In a series of latest works in physics (see [1]) the phenomenon of the repulsion of the energy levels in the spectrum of complicated (random) quantum systems was discussed. The formal definitions are the following.

Let H_{V} be the family of the Hamiltonians describing the behaviour of the system in the volume V and let $E_{1}(V) < E_{2}(V) \leq \ldots$ be the corresponding energy levels. In various interesting cases these levels are thickening in the limit and moreover for every $\varepsilon > 0$ $E_{n+1}(V) - E_{n}(V)$ as $|V| \to \infty$.

We shall consider two neighbour levels $E_{n}(V)$ and $E_{n+1}(V)$, where $n \sim \varepsilon|V|$. It is natural to suppose that the normalized "spectral split" $A_{n} = (E_{n+1} - E_{n})/M(E_{n+1} - E_{n})$ has a limit distribution as $|V| \to \infty$, i.e. there exists

$$\lim_{|V| \to \infty} P\{A_{n} < x\} = G(x).$$
If $G(x) = o(x)$ when $x \to 0$ in this case we deal with the repulsion of the levels (near E_{α}); if $G(x) \sim cx$ we say that an interaction of the levels does not exist near E_{α}; in the case $G(x)/x \xrightarrow[x \to 0]{} \infty$ we may say that there is an attraction between levels (or that the levels show a tendency to group).

It is natural to study several levels near E_{α}. Mathematically this problem is reduced to the analysis of the joint limit distribution of the several neighbour spectral splits $A_n, A_{n+1}, \ldots, A_{n+k-1}$.

As far as it is known to the author no rigorous result in this field has yet been published. However in the so called Wigner Gaussian symmetrical ensemble $H_n = (\xi_{ij}), i,j=1,2,\ldots,n$ ($\xi_{ij}, i \geq j$ are an independent Gaussian random values) the limit distribution function averaged in all splits was found, i.e.

$$\bar{G}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} P\{A_k < x\}$$

and the existence of repulsion was established [2–4].

For the unordered structures the spectrum of which coincides with that of the Schrödinger operator with the random potential the repulsion of the levels was also asserted in [5]. A number of physics works following [5] were based on the results of [5], but it turned out that [5] was false. It is possible to prove the absence of the interaction between the levels in unordered one-dimensional structures for a large class of random stationary potentials, in particular, for δ-potential explored in [5]. Moreover it is possible to analyse the local structure of the spectrum near the fixed point E_{α} in full. This spectrum proves to be a Poisson flow near E_{α} on the natural scale, i.e. the neighbour spectral splits (asymptotically as $|V| \to \infty$) are independent and have exponential distribution.

Our paper contains the proof of the above formulated results and is close to [6, 7].

For the sake of convenience of the references to [7] we narrow the class of the studied potentials but our results remain true for the Kronig-Penny potential and for the potential of the "white noise" type.

2.

Now we pass on to exact formulations. We consider the Schrödinger operator of the Markov type which has been introduced in [6, 7], namely

$$H = -\frac{d^2}{dt^2} + F(x_t(\omega)), \quad t \in R^1, \quad \omega \in \Omega.$$ \hspace{1cm} (1)

Here Ω is the probability space with the measure \mathbf{P} (this space may be identified with the ensemble of all the realizations of the process $x_t, t \in R^1, x_t(\omega)$ is the Brownian motion on the compact Riemannian manifold K and has the generating operator A). The invariant measure of x_t is the natural Riemannian measure. Taking dx to be the initial distribution we turn x_t into stationary Markov process with "good" mixing properties. The function $F : K \to R^1$ is smooth (C^∞) and "non-flat" (see [6, 7]). The last is fulfilled when F has a finite number of nondegenerate (Morse) critical points.