NOTES ON TOP-DOWN LANGUAGES

R. KURKI-SUONIO

Abstract.

Properties of context-free languages and grammars permitting deterministic top-down recognition with bounded lookahead are discussed. In particular, it is shown that for each \(k > 1 \) there are such languages requiring a lookahead of at least \(k \) characters.

Key words: Context-free, language, top-down, lookahead.

1. Introduction and summary.

The concept and definition of \(LL(k) \) grammars, which permit deterministic top-down recognition from left to right with a lookahead of \(k \) characters, have been introduced by Knuth in [1], and by Lewis and Stearns in [5]. The concept of an \(s \)-grammar, which is a special case of an \(LL(1) \) grammar is due to Korenjack and Hoperoft [2]. These concepts have been recently investigated also by Wood in [6].

Sections 2 and 3 of this paper contain definitions and simple theorems which are needed in the later sections.

In section 4 we give some necessary and sufficient properties of \(LL(k) \) languages and grammars. It is shown (theorem 7) that the family of \(LL(k) \) languages is generated by a proper subset of \(LL(k) \) grammars which allows recognition by one-state deterministic pushdown automata with a lookahead of \(k \) characters.

Section 5 deals with the question of reducing the amount of lookahead. It is found that reducing \(k \) by one or replacing an \(LL(1) \) grammar by an \(s \)-grammar might result in a grammar with shorter terminal phrases. This reduction is therefore not possible for some grammars containing null phrases (theorem 9). The special case for \(LL(1) \) and \(s \)-grammars has been treated earlier by the author in [4].

As some kind of a converse to this result it is shown (theorem 11) that if the null string is no sentence it can be deleted from the grammar with the effect of increasing \(k \) by one.

Received April 23, 1969; revised June 24, 1969.
2. Notations and definitions.

Single terminal and nonterminal symbols will be denoted by $a, b, \ldots,$ and A, B, \ldots. Strings of terminals, and strings containing terminals and/or nonterminals will be denoted by $x, y, \ldots,$ and α, β, \ldots. By α^i ($i \geq 0$), we mean the string $\alpha \ldots \alpha$ in which α occurs i times. If only part of a string is displayed, this is indicated by three dots, as e.g. in $x \ldots$, or $\ldots A x \ldots$. The designated nonterminal of a context-free grammar will be denoted by S, and the string of length zero by ε.

The collection of all productions $A \rightarrow \alpha_i$, $(i = 1, \ldots, n)$, for a nonterminal A will also be written as $A \rightarrow \alpha_1 | \ldots | \alpha_n$, and it is called the production rule for A. Since we are in this paper interested only in such derivations in which productions are applied to the leftmost nonterminal of a string only, we define: $xAx \rightarrow \beta$ if and only if $\beta = xx'x$ such that $A \rightarrow x'$; and $\alpha \Rightarrow \beta$ if and only if either $\alpha = \beta$ or there is a derivation sequence $\alpha = \alpha_0 \rightarrow \alpha_1 \rightarrow \ldots \rightarrow \alpha_n = \beta$. The reader is warned that these notations usually have different meanings in the literature.

The arrows \rightarrow and \Rightarrow of this paper correspond to the notations L and L^* in [1].

The length of a string α will be denoted by $l(\alpha)$, and the length of the shortest terminal string derivable from α by $m(\alpha)$.

A nonterminal A is called useless if the situation $S \Rightarrow \ldots A \ldots \Rightarrow x$ does not occur for any x. Without mentioning explicitly we shall assume in the following that a context-free grammar does not contain useless nonterminals.

Discussion on lookahead of k characters is simplified if there are always at least k characters to examine. For this reason we introduce a new terminal \perp and a new non-terminal S_k with one production $S_k \rightarrow S_{k+1}$. If the original grammar was called G, the modified grammar, with S_k as the designated nonterminal, will be called G_k.

Definition 1. A production $A \rightarrow \alpha_1$ in a context-free grammar G is called an $LL(k)$ production, if in G_k

$$S_k \Rightarrow xA\alpha \Rightarrow xx_1\alpha \Rightarrow xx \ldots,$$

$$S_k \Rightarrow xA\beta \Rightarrow xx_2\beta \Rightarrow xx \ldots, \quad l(z) = k,$$

implies $\alpha_1 = \alpha_2$.

Definition 2. A nonterminal (context-free grammar) is called an $LL(k)$ nonterminal (grammar), if all its productions are $LL(k)$ productions.