A PASCAL THEOREM APPLIED TO MINKOWSKI GEOMETRY

R. Artzy

If on an oval in a projective plane a 4-point Pascal theorem, π, with fixed points U and V holds, then the oval is $\{(x,y)|xy=c\} \cup \{(0)\cup \{\infty\}$, with $c \neq 0$, in some Hall coordinatization. If for every 3 distinct points P, Q, R (not on UV; neither U nor V collinear with two of P, Q, R) there is through them a certain point set satisfying an extended version of π, then all these sets together with all lines not through U or V form the circles of a plane Minkowski (= pseudo-euclidean) geometry over a commutative field. π may be expressed in terms of Minkowski geometry. Together with incidence axioms derived from the projective incidence axioms, the Minkowski version of π characterizes the plane Minkowski geometry over a commutative field and is thus equivalent to Miquel's theorem.

The validity of Pascal's theorem on an oval in a projective plane has been shown to make the plane pappian and the oval a conic [2, 4, 9]. Special Pascal theorems have been studied: Hofmann [5] showed that the 5-point specialization is equivalent to the full 6-point theorem, and other cases were discussed in [7]. There are two 4-point specializations one of which, here called π_{UV}, has the property that its validity with two fixed points U and V on the oval "makes the oval a conic", in the sense that a coordinate system can then be found in which the proper points of the oval are $\{(x,y)|xy=c\}$ for some $c \neq 0$. This property motivated a search for a role played by π_{UV} in the foundations of plane Minkowski (= pseudo-euclidean)
geometry whose classical affine model [cf. 3] is based on the hyperbolas $xy=c$ and their translates. Indeed it turns out (Theorem 2) that a projective plane in which π_{UV} holds for certain point sets provides a model for a plane Minkowski geometry over a commutative field. When we free ourselves from the projective model, then π_{UV} can now be expressed in a purely Minkowski-geometric form, called π_X. The axioms of the projective plane used for constructing the model can also be translated into Minkowski-geometric versions. These new axioms, together with π_X, now provide a foundation for the plane Minkowski geometry over a commutative field. This foundation seems to be less redundant than previously used axiom systems [3, 6]. Another interesting consequence is that π_X is equivalent to Miquel's theorem.

1. In a projective plane.

The following special 4-point Pascal theorem on an oval will be called π.

π: If U, V, P, Q are distinct points of the oval, and if the tangents at U and V are called UU and VV, respectively, then the points $UU \cap VV$, $UP \cap VQ$, and $UQ \cap VP$ are collinear.

In particular, we will denote the theorem π for fixed points U and V by π_{UV}.

THEOREM 1. An oval in a projective plane can be represented by $\{(x,y)|xy=c \neq 0\} \cup U \cup V$ in some Hall coordinate system [cf. 1, p. 203] if π_{UV} holds true on the oval.

A special case of the theorem can be found in [7].

Proof. In a Hall coordinate system let $U = (0)$, $V = (\infty)$, and $P = (1,c)$ a distinct arbitrary point of the oval. For every point $Q = (x,y)$ of the oval, distinct from P, U, V, we have $UP \cap VQ = (x,c)$ and $UQ \cap VP = (1,y)$.

94