DIRECT SUMMANDS OF VECTOR GROUPS

J. D. O'NEILL (Detroit)

In Theorem 4.3 in [3] we stated the following: If \(V = A \oplus B \) is a reduced vector group and \(|V| \) is non-measurable, then \(A \) and \(B \) are vector groups. Our proof in [3], however, was defective in part. We here present a new proof which is also much simpler than that in [3]. Explicitly we prove the following.

Theorem. Let \(V = \Pi_i R_i = A \oplus B \) where each \(R_i \) is a rank-one reduced torsion-free abelian group and \(|I| \) is non-measurable. Then \(A \) (also \(B \)) is a direct product of rank-one groups.

Preliminaries. We shall presume a basic knowledge of vector groups and slender groups such as is found in [2] (see also Lemmas 3.1 and 3.2 in [3]). The maps \(\alpha: V \to A \), \(\beta: V \to B \), \(\alpha_i: V \to R_i \) will be the obvious projections. The type of \(R_i \) is denoted \(t_i \). The first infinite ordinal is \(\omega \). We first give 4 lemmas and then the formal proof.

Lemma 1. \(I \) can be ordered as an ordinal so that, for each limit ordinal \(j \), \(\alpha_i(R_k) = 0 \) whenever \(i < j \leq k \).

Proof. Let \(0 \in I \) be arbitrary. Suppose \(k \) is an ordinal and ordinals \(i \) have been chosen from \(I \) for all \(i < k \). Choose \(k \) from \(I \setminus \{ i: i < k \} \) so that: \(\alpha_i(R_k) \neq 0 \) for minimal \(i < k \) if possible; otherwise choose \(k \) arbitrarily.

Inductively totally order \(I \) in this manner. Since each \(R_i \) is slender, it is easy to see that \(I \) will satisfy the lemma for \(j = \omega \) and eventually for all limit ordinals \(j \).

Lemma 2. Suppose \(J \) is a well-ordered set with least member \(0 \) and \(A \) has direct summands \(A_j \), \(A^j \) for each \(j \) in \(J \) such that:

1. \(A = A^0 \) and \(A^j = A_j \oplus A^{j+1} \) (if \(j \) is maximal \(A^j = 0 \)),
2. \(A^k = \bigcap_{j < k} A^j \) if \(k \) is a limit of members of \(J \),
3. for each \(i \in I \) \(\alpha(A_j) = 0 \) for almost all \(j \).
4. \(\bigcap_j A^j = 0 \).

Then \(A = \prod_j A_j \).

Proof. For simplicity assume \(J \) is an ordinal. a) By (3) \(\sum_j A_j \subseteq A \) (see Lemma 3.2 in [3]). b) Suppose \(a \in A \) and we have chosen \(a_j \in A_j \) for all \(j < k \) such that \(a - \sum_{j < k} a_j \in A^k \). By repeated use of (1) we can find \(a_j \in A_j \) for all \(j \) where \(j - k \)}
is finite so that $a_i = \sum_{j=k+i}^{j=k+1} a_j \in A^{k+1}$ for all finite i. Now $a_i = \sum_{j=k+i}^{j=k+1} a_j \in A^{k+1}$ by (2). We can now proceed inductively to find $a_j \in A_j$ for all j so that $a_i = \sum_{j=k+i}^{j=k+1} a_j \in A^k$ for each k in J. So, for any k, $a_i = \sum_{j=k+i}^{j=k+1} a_j = (a_i - \sum_{j=k+1}^{j=k+1} a_j) + \sum_{j=k+1}^{j=k+1} a_j$, which is in A^k since the left sum is in A^k by construction and the right sum is in A^k by (3) and Lemma 3.2 in [3]. Therefore $a_i = \sum_{j=k+i}^{j=k+1} a_j = 0$ by (4) and $A \subseteq \sum_{j=k}^{j=k+1} A_j$. c) Suppose $\sum_{j=k}^{j=k+1} a_j = 0$ and $a_k \neq 0$ for minimal k. Then $0 \neq a_k = -\sum_{j=k+i}^{j=k+1} a_j \in A^{k+1} \cap A_k = 0$, a contradiction. So $a_j = 0$ for all j. By a), b), c) $A = \prod_{j=k}^{j=k+1} A_j$.

Lemmi 3. Let I be ordered as in Lemma 1 and let J consist of 0 and all limit orderinals in I. For each j in J write: $V_j = \sum_{i,j} R_i$, $V_j = \prod_{i,j} R_i$, $A_j = A \cap (\beta(V_j) \oplus V_j)$ and $B_j = B \cap (\alpha(V_j) \oplus V_j)$ (if j is maximal in J set V_j = 0). Then $A = \prod_{j=k}^{j=k+1} A_j$ and $V_j = A_j \oplus B_j$ for each j.

Proof. For each j $\alpha(V_j) \subseteq V_j$ by Lemma 1 so $V_j = \alpha(V_j) \oplus \beta(V_j)$. Let $A^j = \alpha(V_j)$ and $B^j = \beta(V_j)$. Now $V_j = A^j \oplus B^j$, $V_j = A^j \oplus B^j$ and $V_j = A^j \oplus B^j \oplus B^j$. Consequently $A^j = A_j \oplus A^j \oplus B^j$ and $V_j = A^j \oplus B^j \oplus B^j$ as desired. We now just apply Lemma 2. Clearly (1) is true. If k is a limit of members of J then $A^k \subseteq \bigcap_{j<k} A^j \subseteq \bigcap_{j<k} V_j = \alpha(V^k) = A^k$ so (2) is true. For fixed i consider $\alpha_i(\prod_{j=k}^{j=k+1} V_j)$. By the slenderness of R_i, $\alpha_i(V_j) = 0$ for almost all j. But $\alpha(A_j) = A_j$ and A_j by definition is in $\alpha(V_j)$. So $\alpha_i(A_j) \subseteq \alpha_i(V_j) = 0$ for almost all j and (3) is true. Finally $\bigcap_{j<k} A^j \subseteq V_j = 0$ (if j is maximal in J include $j+\omega$ here). Lemma 2 completes the proof.

Lemma 4. Suppose $m \in I$ and $A = C \oplus D$ where C has finite rank. Then $D = E \oplus F$ where E has finite rank and $\alpha_m(F) = 0$.

Proof. Write $V^m = \prod_{i=m}^{i=m} R_i$ and, for each type t, let $V_t = \prod_{i=m}^{i=m} R_i$. Let $\gamma : A \rightarrow C$ be the projection. Consider $\alpha_m(\Pi V_t)$ and $\gamma(\Pi V_t)$ where $V = \Pi V_t$. Since R_m and C are slender, $\alpha_m(V_t) = 0 = \gamma(V_t)$ for almost all t. So $\alpha_m(V_t) \subseteq D \cap V^m$ for almost all t. Let T be the finite set of types t such that $\alpha_m(V_t) \subseteq D \cap V^m$. We will induct on the order of T to prove the lemma. If $T = \emptyset$, then $A = \alpha(V_t) \subseteq D \cap V^m$ and $E = 0$, $F = D$ satisfy the lemma. If $T \neq \emptyset$, let s be a minimal type in T. Set $T^* = T - s$ and $A = \alpha(V_t) \subseteq D \cap V^m$ and $E = 0$, $F = D$ satisfy the lemma. If $T \neq \emptyset$, let s be a minimal type in T. Set $T^* = T - s$ and $A = \alpha(V_t) \subseteq D \cap V^m$ and $E = 0$, $F = D$ satisfy the lemma. If $T \neq \emptyset$, let s be a minimal type in T. Set $T^* = T - s$ and $A = \alpha(V_t) \subseteq D \cap V^m$ and $E = 0$, $F = D$ satisfy the lemma.