Table 2. Inhibition of sepiapterin deaminase (%)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Concentrations</th>
<th>10⁻² M</th>
<th>10⁻³ M</th>
<th>10⁻⁴ M</th>
<th>10⁻⁵ M</th>
<th>10⁻⁶ M</th>
<th>10⁻⁷ M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KF</td>
<td>72.0</td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Chloromercuribenzoate</td>
<td>80.0</td>
<td>11.8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Azaguanine</td>
<td>51.3</td>
<td>17.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenyl methyl sulfonyl fluoride</td>
<td>32.0</td>
<td>6.4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amethopterin</td>
<td>76.0</td>
<td>41.3</td>
<td>6.4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminopterin</td>
<td>83.2</td>
<td>14.3</td>
<td>7.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sepiapterin, 0.4 μmoles; 3.5 units of enzyme, and inhibitor as described. After incubation at 25 °C for 10 min, 0.5 ml of 0.3 N NaOH was added and the decrease in absorbance at 475 nm was determined as previously described. Sodium azide, KCN, monooiodoacetic acid, dinitrophenol, propionic acid, melamine and EDTA were not effective as inhibitors at a final concentration of 10⁻³ M for either type of deaminase preparation. Substances which were effective as inhibitors are listed in table 2. These compounds produced the same degree of inhibition with both type of enzyme preparation, thus indicating that the deaminase activity found in the 2 strains is due to 1 protein. The susceptibility of the enzyme to p-chloromercuribenzoate shows that sepiapterin deaminase differs from rat liver pterin deaminase and Bombyx mori iso-xanthopterin deaminase. With 17.5 units of purified sepiapterin deaminase, iso-xanthopterin deaminase activity was estimated, neither ammonia nor product 7-oxylumazine was detected. These data prove that the 2 enzymes differ from each other. Since bacterial pterin deaminase is inhibited by KF at a concentration of 3×10⁻⁵ M, it too is distinct from silkworm sepiapterin deaminase.

Lineweaver-Burk plots of normal and inhibited deaminase activity are shown in the figure. It can be seen that amethopterin and 8-azaguanine are competitive inhibitors of the enzyme, while p-chloromercuribenzoate is a non-competitive inhibitor. From the figure, Kᵢ values for the substances were calculated as follows: amethopterin, 1.9×10⁻³ M; 8-azaguanine, 6.7×10⁻⁴ M; p-chloromercuribenzoate, 2.4×10⁻⁵ M. The decreased concentration of sepiapterin deaminase in the integument of the normal type silkworm is noteworthy. In the normal type silkworm, it is probable the sepiapterin is converted to tetrahydrobiopterin via dihydrobiopterin. In the lemon mutant strain, a lack of sepiapterin reductase results instead in the accumulation of sepiapterin. The excess sepiapterin is excreted after deamination by sepiapterin deaminase, an action which produces a compound which is more water-soluble than sepiapterin itself.

The high specific activity of the deaminase in malpighian tubules supports this possibility.

Large scale preparation of calf liver nuclei by continuous flow centrifugation

M. G. Cacace, R. Nucci and Hanne Reckert

Laboratory of Molecular Embryology, I–80072 Arco Felice (Naples, Italy) and Beckman Instruments, GmbH, D–8 München 45 (Federal Republic of Germany), 10 December 1976

Summary. Large scale purification and preparation of calf liver nuclei was accomplished by high speed centrifugation of a fraction enriched in nuclei ('nuclear homogenate') through 1.8 M sucrose by means of a Beckman CF-32 Ti continuous flow rotor. In comparison with methods involving the use of conventional high capacity rotors, larger volumes of homogenate could be processed. This method was used to prepare nuclei from calf liver for the preparation of DNA-dependent RNA polymerases. The use of continuous flow ultracentrifugation avoids time-consuming manipulations, thus allowing handling of large quantities of tissue.

High-density sucrose centrifugation is one of the most effective methods for preparing nuclei of animal cells free of contamination from other subcellular particles. This point becomes of crucial importance when investigating enzymes present in multiple forms which are located in different subcellular particles. The low content in normal conditions of such enzymes often requires an enrichment of the selected subcellular particles from large quantities of starting tissue material. Whilst studying DNA-dependent RNA polymerase from different calf organs, we developed a method of preparing nuclei from calf liver in a high yield with a good degree of purity, using a continuous flow ultracentrifugation.

Experimental. Sucrose and MgCl₂ were reagent grade. A Beckman CF-32 Ti continuous flow rotor in a model L3-50 Spinco ultracentrifuge was used. The flow through the rotor was maintained by means of a Cole Parmer Masterflex model 7565 high capacity peristaltic pump with variable speed control. The temperature during all experiments was maintained below 4°C.

Calf liver, obtained from a local slaughterhouse, was cut into pieces and thoroughly washed in a few volumes of 1 The authors wish to thank Dr Wm. Gyure, Cape Cod Hospital, Hyannis, Massachusetts, USA, for his help in preparing this report.

1 Acknowledgments. The authors wish to thank Professor J. Brachet for his interest and fruitful discussion. They also thank Ms J. Gilder for secretarial assistance.
2 Present address: International Institute of Genetics and Bio- physics, I-80125 Naples (Italy).
chilled 0.32 M sucrose, 3 mM MgCl$_2$. The liver fragments, weighing 1400 g, were minced in an ordinary meat mincer and suspended in 5 volumes of the washing solution. The suspension was then homogenized in a Waring Blender in 800 ml aliquots for 5 min at low speed setting. The homogenate was filtered through 2 layers of cheesecloth and a paddle of glass wool in a Buchner funnel, then centrifuged at 2500 × g for 15 min in the preparative rotor 872 of an I. E. C. B-20A centrifuge.

The crude nuclear pellet was resuspended in a measured volume of 2.4 M sucrose, 1 mM MgCl$_2$ and brought with the same solution to a final volume corresponding to a 5:1 ratio with respect to the pellet volume. The suspension was then stirred in the blender for 3 min and filtered once again through two layers of cheesecloth and used for the following experiments. This suspension will be referred to as 'nuclear homogenate'. DNA-dependent RNA polymerase from calf liver nuclei was prepared and assayed as described earlier.

Results and discussion. 2 aliquots of the nuclear homogenate, whose concentration in sucrose was 2.05 M, were diluted with 1 mM MgCl$_2$ to a final sucrose concentration of 1.5 M and 1.7 M respectively. The 2 solutions were used for a set of 2 experiments. While the rotor was running at low speed, the peristaltic pump was used to introduce 125 ml of overlay solution (1.4 M sucrose and 1.6 M sucrose according to the concentration of the nuclear homogenate) followed by 300 ml of the heavier solution, 1.8 M sucrose, 1 mM MgCl$_2$, at the outer edge of the rotor. The rotor was then accelerated to 30,000 rpm corresponding to a maximum force of 90,000 × g and the sample, pumped through the centre lines of the rotor, was introduced at the lower edge of the core at different flow rates. Nuclei were subjected to 75,000-80,000 rpm for the time required to reach the top of the core and, at the appropriate flow rate, became trapped in the 1.8 M sucrose layer, eventually pelleting to the rotor wall. The effective removal of nuclei from the samples was checked by collecting the effluent and pelleting residual nuclei over a uniform 1.8 M sucrose layer, the sample. These particles, which may interfere with the sedimenting nuclei and eventually contaminate them. Phase contrast microscopic examination of the pelletted nuclei revealed intact nuclei with very little contamination. The isolated nuclei were also stained with methyl green-pyronine; no ribosomal contamination could be seen. Nuclei obtained by continuous flow ultracentrifugation were used to prepare DNA-dependent RNA polymerases. The purification procedure consisted of sonication at high ionic strength of nuclei, chromatin removal and ammonium sulphate precipitation. The figure shows the elution profile of enzyme activities from a DEAE-Sephadex A-25 column. The pattern of elution obtained was essentially identical to that observed when the enzyme was prepared from nuclei purified according to Pogo et al.7

The high centrifugal force developed in this rotor allows rapid sedimentation of the nuclei even at the high sucrose concentration necessary to prevent contemporary sedimentation of other subcellular particles. The concentration of the layer through which nuclei sediment, can be increased to improve the degree of purity. Of course, at

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sucrose concentration (M)</th>
<th>Maximal flow rate for complete clean out (l/h)</th>
<th>Recovery* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>2.7</td>
<td>1.57</td>
</tr>
<tr>
<td>2</td>
<td>1.7</td>
<td>2.3</td>
<td>1.66</td>
</tr>
</tbody>
</table>

* Recovery was expressed as wet weight of nuclear pellet to weight of the tissue.

Some difficulties were encountered in pumping the highly viscous 1.7 M sucrose solution into the rotor. Since in both cases nuclei were allowed to sediment through a uniform 1.8 M sucrose layer, the use of the 1.5 M sucrose solution, easier to handle and to pump into the rotor, seemed preferable. The use of a high density sucrose homogenate restricted the species of sedimenting subcellular particles to the heavier ones and prevented the building up of a layer of particles of intermediate density at the interface between the 1.8 M sucrose layer and the sample. These particles, when processing large volumes, would interfere with the sedimenting nuclei and eventually contaminate them.

[Graph showing DEAE-Sephadex chromatography of RNA polymerases from calf liver nuclei.]
