Boehmians were first introduced by a purely algebraic construction presented in [5]. Applications of the method to function spaces yield various spaces of generalized functions (see [6], [7] and [8]). In those examples, the construction is based on the concept of convolution. The fact, that the convolution of a continuous function on \(R^q \) with a function with compact support in \(R^q \) is always a continuous function on \(R^q \), is of basic importance for the construction. The situation complicates in the case of functions defined on an open subset of \(R^q \): the convolution of such a function with a function with compact support is not usually defined for all points from that open set. Therefore the algebraic method cannot be used.

It is proved in [6], that the space of Boehmians on \(R^q \) can be equivalently defined as the completion of the space of continuous functions on \(R^q \) with respect to a special type of convergence, called \(A \)-convergence. The definition of Boehmians on open sets, presented in this paper, is based on that fact.

1. Let \(\Omega \) be a fixed open set in \(R^q \). In this paper we are going to use the following notation:

- \(C(\Omega) \) the space of all continuous complex-valued functions on \(\Omega \),
- \(C_C \) the space of all continuous real-valued functions on \(R^q \) with compact support,
- \(|x| = (x_1^2 + \ldots + x_q^2)^{1/2} \) for \(x = (x_1, \ldots, x_q) \in R^q \),
- \(B_{\varepsilon} = \{x \in R^q: |x| < \varepsilon\} \) for \(\varepsilon > 0 \),
- \(A_{\varepsilon} = \{x \in R^q: x + B_{\varepsilon} \subset A\} \) for \(\varepsilon > 0 \) and \(A \subset R^q \),
- \(s(\varphi) = \inf \{\varepsilon > 0: \text{supp } \varphi \subset B_{\varepsilon}\} \) for \(\varphi \in C_C \),
- \(\overline{A} \) the closure of \(A \) for \(A \subset R^q \).

The concept of convolution plays the crucial role in the construction of Boehmians. Let \(f \in C(\Omega) \) and \(\varphi \in C_C \). By the convolution \(f \ast \varphi \) we mean the function

\[
(f \ast \varphi)(x) = \int_{\text{supp } \varphi} f(x-u)\varphi(u) \, du
\]

which is well defined for all \(x \in R^q \) such that \(x - \text{supp } \varphi \subset \Omega \). Clearly, it may happen that there is no such \(x \).
Let \(f \in C(\Omega) \) and let \(U \) be an open set such that for some \(\varepsilon > 0 \) we have \(\overline{U + B_\varepsilon} \subseteq \Omega \). Then there exists \(g \in C(\mathbb{R}^d) \) such that \(f = g \) on \(U + B_\varepsilon \). Therefore
\[
(f * \varphi)(x) = (g * \varphi)(x)
\]
for every \(x \in U \) and every \(\varphi \) such that \(s(\varphi) < \varepsilon \). Consequently, the defined convolution has all basic properties of the convolution defined globally (over entire \(\mathbb{R}^d \)). For example, \(((f * \varphi) * \psi)(x) = (f * (\varphi * \psi))(x) \) for every \(x \in \Omega \) where both sides are defined.

Denote by \(S_0 \) the subset of \(C_c \) consisting of all those non-negative functions \(\varphi \) such that \(\int \varphi = 1 \). A sequence \(\delta_n \in S_0 \) is called a delta sequence, if \(s(\delta_n) \to 0 \) as \(n \to \infty \). It is important to note that, if \(\varphi_n \) and \(\psi_n \) are delta sequences, so is the sequence of convolutions \(\varphi_n * \psi_n \).

Let \(K \) be a compact subset of \(\Omega \) and let \(f_n \in C(\Omega) \) for \(n = 1, 2, \ldots \). If \(\delta_n \) is a delta sequence, then the sequence of convolutions \(f_n * \delta_n \) is defined on \(K \) for all sufficiently large \(n \in \mathbb{N} \), say all \(n \) greater than some \(n_0 \). If, moreover, the sequence \(f_n * \varphi_n \) (where \(n_0 + 1, n_0 + 2, \ldots \) converges uniformly on \(K \), we simply say that \(f_n * \varphi_n \) converges uniformly on \(K \).

It is known and easy to prove that if \(f \in C(\Omega) \) and \(\delta_n \) is a delta sequence, then the sequence of convolutions \(f * \delta_n \) converges to \(f \) uniformly on every compact subset of \(\Omega \).

Definition 1.1. A sequence of functions \(f_n \in C(\Omega) \) is called \(\Delta \)-convergent to \(f \in C(\Omega) \), if for each compact \(K \subseteq \Omega \) there exists a delta sequence \(\delta_n \) such that the sequence of convolutions \((f_n - f) * \delta_n \) converges to zero uniformly on \(K \). In this case we write \(f_n \xrightarrow{\Delta} f \).

Remark. \(\Delta \)-convergence is weaker than the usual convergence in \(C(\Omega) \); if a sequence \(f_n \in C(\Omega) \) converges to \(f \in C(\Omega) \) uniformly on each compact subset of \(\Omega \), then the sequence of convolutions \((f_n - f) * \delta_n \), where \(\delta_n \) is any delta sequence, converges to zero uniformly on every compact subset of \(\Omega \). This property follows immediately from the following

Lemma 1.2. Let \(K \subseteq \mathbb{R}^d \) be a compact set. Let \(K' = K + B_\varepsilon \) for some \(\varepsilon > 0 \). For any function \(f \) continuous on \(K' \) and any \(\varphi \in C_c(\mathbb{R}^d) \) such that \(s(\varphi) < \varepsilon \) we have
\[
\max_{x \in K'} |(f * \varphi)(x)| \leq \max_{x \in K'} |f(x)| \cdot \int_{\mathbb{R}^d} |\varphi(x)| \, dx.
\]

Proof. Let \(x \in K \). Then
\[
|(f * \varphi)(x)| \leq \int_{\text{supp} \varphi} |f(x - u)| |\varphi(u)| \, du \leq \max_{x \in K'} |f(x)| \cdot \int_{\mathbb{R}^d} |\varphi(x)| \, dx.
\]
Since the inequalities hold for every \(x \in K \), the desired inequality follows.

Lemma 1.3. If \(f_n \xrightarrow{\Delta} f \), \(g_n \xrightarrow{\Delta} g \), \(f_n, g_n, f, g \in C(\Omega) \), \(\alpha_n \rightarrow \alpha \) (\(\alpha_n, \alpha \) are complex scalars), then \((f_n + g_n) \xrightarrow{\Delta} f + g \) and \(\alpha_n f_n \xrightarrow{\Delta} \alpha f \).

Proof. Let \(K \) be a compact subset of \(\Omega \) and, let \(\varphi_n \) and \(\psi_n \) be delta sequences such that both sequences \((f_n - f) * \varphi_n \) and \((g_n - g) * \psi_n \) converge to zero uniformly...