REGIONAL ASPECTS
SOME EMPIRICAL EVIDENCE OF THE STRENGTHS OF LINKAGES BETWEEN GROUPS OF RELATED INDUSTRIES IN URBAN-REGIONAL COMPLEXES

STAN CZAMANSKI
Cornell University

At the regional level the empirical questions most often facing the regional scientist spring from the policy objective to “rehabilitate” the local economy and start a growth process. In a small open economy a major breakthrough can result only from the introduction of new productive activities. Both location and development theory support the view that the attractiveness of a region and the pull that it exercises upon industries looking for suitable locations are a function of the existence of a prior industrial agglomeration.

Among the various types of spatial groupings acting as growth poles, an important category is formed by industrial complexes. According to some hypotheses, a group of industries complementary to one another, characteristic of an industrial complex, forms the most propitious background for initiating self-supporting growth processes. Under modern conditions the strength and variety of forward and backward interindustry links generate economies of scale and agglomeration that are the basis of regional growth and development [6, 11].

The problem can also be viewed in a slightly different way. The importance of a new industry to a depressed region resides not only in the volume of new employment and income that it generates but very often primarily in its indirect impact, the strength of which can be effectively measured with the help of input-output analysis. A common feature of depressed regions is the general weakness of multiplier effects generated in their economies, due mainly to the size of leakages present. The absence of substantial indirect effects ordinarily accompanying new investments constitutes one of the greatest obstacles to efforts aimed at invigorating the economies of depressed regions, and makes the process at best a slow and expensive one.

Yet, the introduction of new industries progressively reduces leakages and reinforces the indirect impact of new activities until a point is reached when, in

---

The author is professor of City and Regional Planning at Cornell University. The financial help for carrying out the research reported in this paper was provided by a Cornell Faculty Research Grant and is gratefully acknowledged. Most of the computations reported in the paper were carried out by John Holmstrom, then a graduate student at Cornell University, while the original computer program was developed by James Burgess, a student at Dalhousie University, Halifax, Nova Scotia. Thanks are due to Professors David E. Boyce and Isadore Blumen for many helpful comments. Mrs. Margaret Dingley provided editorial assistance.