The effects of manganese and barium on the cardiac pacemaker current, i_f, in rabbit sino-atrial node myocytes

D. DiFrancesco *, F. Porciatti and J. S. Cohen *

Dipartimento di Fisiologia e Biochimica Generali, Elettrofisiologia, via Celoria 26, I-20133 Milano (Italy), and *Department of Physiology and Biophysics, Health Sciences Center, SUNY at Stony Brook, Stony Brook (New York 11794–8651, USA)

Received 12 July 1990; accepted 2 October 1990

Summary. The isolation of ionic fluxes contributing to electric currents through cell membranes often requires block of other undesired components which can be achieved, among others, by divalent cations. Mn$^{2+}$ and Ba$^{2+}$ are often used, for example, to block Ca and K currents. Here we have investigated the effects of these two cations on the properties of the hyperpolarization-activated pacemaker current i_f, in rabbit sino-atrial node myocytes, as obtained by voltage clamp analysis. We find that 2 mM Mn$^{2+}$ shifts the i_f activation curve by 3.2 ± 0.3 mV towards more positive values. However, when 1 mM Ba$^{2+}$ is also added, the positive shift is more than halved (1.3 ± 0.2 mV). We find, too, that in the absence of blocking cations the ACh-induced i_f inhibition is slightly higher than in their presence. These results indicate that the alteration of i_f kinetic properties by Ba$^{2+}$ plus Mn$^{2+}$-containing solutions is minimal.

Key words. Pacemaker current; SA node; channel blockers.

Although the presence of i_r, a Na/K selective, inward current activated by hyperpolarization has been recognized in the mammalian SA node for more than a decade, its role in generating and modulating the normal diastolic depolarization remains controversial. A central part of this controversy concerns the voltage range of the pacemaker current i_f and its modification by neurotransmitters and divalent cations.

Often, divalent cations such as Ba$^{2+}$ and Mn$^{2+}$ are used to dissect the current i_f from interfering components (see for example DiFrancesco et al. 1). Acting through surface-charge screening or binding, divalent cations may alter the position of the activation curve (see for example DiFrancesco and McNaughton 2, for the pacemaker current in Purkinje fibers).

Recently DiFrancesco et al. 3 have reported that low (nM) concentrations of acetylcholine shift i_f in a negative direction on the voltage axis and this effect of acetylcholine (ACh) is a major contributor to ACh's negative chronotropic effect. In their work, the dose-response relation for i_f inhibition by ACh was measured in solutions containing Ba$^{2+}$ and Mn$^{2+}$. After that report appeared Brown et al. 5 suggested that the inclusion of Mn$^{2+}$ in the bathing Tyrode can shift the activation curve for i_f as much as 10 mV in the positive direction on the voltage axis. This could affect the estimation of the relevance of i_f to the generation and control of the diastolic depolarization. In the present report we have examined the effects of Mn$^{2+}$, and Mn$^{2+}$ plus Ba$^{2+}$ on i_f with the aim of exploring the extent of the modification induced by these cations on the current activation range. Also we examined if Ba$^{2+}$ or Mn$^{2+}$ alter the dose response relation of ACh on i_f. We present data on the effects of ACh on the activation range of i_f in the absence of these blocking cations, at ACh concentrations which only minimally affect the ACh-activated K-current $i_{K, ACh}$ (up to 30 nM). Our results indicate that the presence of Ca-current blockers does not affect significantly the analysis of the properties of i_f, and in particular does not alter the dose-response curve of the i_f dependence on ACh.

Methods

The experiments were performed on acutely isolated SA node myocytes from the rabbit. The isolation procedure and electronic set up for whole cell voltage clamp have been described previously 1. The cells were aliquotted into petri dishes and directly placed on the temperature controlled microscope stage for study. The Tyrode solution contained in mM 140 NaCl, 5.4 KCl, 1.8 CaCl$_2$, 1.0 MgCl$_2$, 10 NaHCO$_3$, 10 d-glucose and 5.0 Hepes NaOH (pH = 7.4). We added BaCl$_2$ (1 mM), MnCl$_2$ (2 mM) and acetylcholine chloride (3–30 nM) as indicated. The dialyzing solution in the pipette contained (in mM): 10 NaCl, 130 K aspartate, 2.0 Mg-adenosine triphosphate (ATP), 0.1 guanosine triphosphate (GTP), 1.0 EGTA, and 10 mM Hepes-KOH (pH = 7.2). External solutions were superfused from a pipette placed over the myocyte under study. Exchange took less than 1 s. The temperature was maintained at 35–36°C. No corrections for liquid function potentials were applied in keeping with the previous study by DiFrancesco et al. 3. Voltage shifts of the i_f activation curve under the action of shifting agents were measured as described in DiFrancesco et al. 3. The holding potential was set to -35 mV in the control (Tyrode) solution which is above the top of the activation curve, and i_f was activated by a hyperpolarization to the mid-activation range applied every 2 seconds. In the presence of the shifting agent, the holding potential was adjusted manually to a new value by turning the holding potential knob (sensitivity = 0.1 mV), until the i_f time-course in the test solution overlapped that in the control solution. The displacement from -35 mV of the new holding potential repre-
sented the measured shift of the i_f activation curve. Given the high steepness of the i_f activation curve, this method allowed resolution of fractions of a mV.

Results

The effects of Mn^{2+} and Ba^{2+} on the voltage dependence of i_f. We examined the actions of 2 mM Mn^{2+} in the absence or presence of 1 mM Ba^{2+} on the voltage-dependent activation of the current i_f. Our first protocol consisted of holding the myocyte at -35 mV and hyperpolarizing the cell to a voltage within the i_f activation range. The holding potential of -35 mV was chosen because it is normally a few mV positive to the top of the i_f activation curve. A sample set of results is illustrated in figure 1 A.

In this experiment the test potential was -85 mV, and the letters a–d indicate the order of solution application. Tyrode containing 2 mM Mn^{2+} increases the amplitude of i_f, but this increase was strongly reduced when 1 mM Ba^{2+} was also added. The effects of these solution changes were reversible.

A 3-pulse protocol was then used to see if the alterations in i_f amplitude were due to a shift in the voltage dependence of i_f activation (fig. 1 B). The first hyperpolarizing pulse was delivered to the middle of the i_f activation curve and the second hyperpolarizing pulse was delivered to the bottom of the i_f activation curve. A third depolarizing pulse rapidly deactivated i_f before the cycle was repeated. A positive shift in i_f activation was indicated by a larger time-dependent current in response to the first hyperpolarizing step and a smaller time-dependent current in response to the second hyperpolarizing step. Figure 1 B illustrates that for $\text{Mn}^{2+} (2 \text{ mM}) + \text{Ba}^{2+} (1 \text{ mM})$ (*), and $\text{Mn}^{2+} (2 \text{ mM}) (x)$ a shift in i_f activation is observed. These results show that the action of the Ca-current blockers on i_f is essentially that of shifting the current activation range to more positive voltages.

We next examined quantitatively the action of the blocking cations on i_f by using the protocol shown in Figure 1 C. Here the test solution was superfused during a train of voltage steps of constant amplitude and the holding potential was then moved positive until the i_f current was determined. Further addition of Ba^{2+} partially reversed this effect. Cell 3-4. C Measurement of shifts of i_f activation curve caused by either Mn^{2+} plus Ba^{2+} (upper) or Mn^{2+} alone (lower). Hyperpolarizing steps of fixed amplitude (40 mV) were applied from a holding potential of -35 mV in the control solution, and the holding potential was then moved positive, during superfusion with the test solution, until the i_f traces overlapped as shown. The shifts were -1.5 mV for the Mn^{2+} plus Ba^{2+} solution, and -4.0 mV for the Mn^{2+} solution. Cell 1f-6.