The influence of light and dark on attack of bean leaves by Alternaria zinniae

J. VAN DEN HEUVEL

Phytopathologisch Laboratorium “Willie Commelin Scholten”, Baarn, The Netherlands

Accepted 8 September 1969

Abstract

Bean leaves inoculated with spores of Alternaria zinniae showed small purplish brown lesions after incubation in light for 3 days. After incubation in darkness for 1–3 days necrotic spots were formed, the size of which increased with increasing length of the period of incubation in darkness. Application of culture filtrates of A. zinniae to the leaves caused the same symptoms as did inoculation with spore suspensions.

Introduction

There are several examples that infection of plants by pathogenic fungi is influenced by light conditions. Infections of lettuce by Bremia lactucae, red radish by Albugo candida, wheat by Erysiphe graminis or Puccinia triticina, and bean by Uromyces appendiculatus were stimulated after exposure to darkness during the first days of the infection period (Sempio, 1939). Wheat varieties highly susceptible to Puccinia triticina became less sensitive to the pathogen after incubation in darkness for 2 days, whereas resistant varieties became less resistant (Hassebrauk, 1940). Flentje (1957) observed that lettuce seedlings hypersensitive to certain strains of Thanatephorus cucumeris were susceptible after exposure to reduced light intensity for 4 days or more. Numbers of lesions on leaves on Vicia faba caused by Botrytis fabae increased after 24 h incubation in darkness before infection (Sol, 1966).

It was earlier found that Alternaria zinniae Pape forms small distinct lesions on leaves of dwarf beans at normal light conditions (van den Heuvel, 1969). The present study deals with investigations whether the infection could be stimulated by exposure to darkness. It was also examined whether a toxic factor produced by this fungus might be involved in the disease reactions.

Material and methods

Primary leaves of glasshouse-grown dwarf beans (Phaseolus vulgaris cv. ‘Irene’ and ‘Corene’) were inoculated, when 11 days old, with spore suspensions of A. zinniae, prepared from 4 days-old oat meal agar cultures. The suspensions, in 0.1 % Tween 80, the concentrations being adjusted to 62.5 × 10⁳ spores per ml, were applied to the primary leaves in two different ways: (a) by spraying the leaves to run-off (“spray” method), and (b) by pipetting 40 µl of inoculum to each half-leaf, and then spreading it by a glass rod with a flattened end over an area of 4.9 cm² within a 25 mm diameter glass ring (“spread” method).
The leaves, still attached to their parent plants, were kept horizontal with supports of PVC during glasshouse incubation at 20°–25°C in humid-chambers. Some of these chambers were covered with black covers of cotton or plastic, whereas others were not, representing "darkness" and "light" treatment, respectively. Plants in uncovered chambers were exposed to the normal day/night light cycle.

Culture filtrates of *A. zinniae* were prepared by growing the fungus on a liquid medium according to White and Starratt (1967) in Roux bottles at 26°C for 17 days and separating the mycelial mats from the liquids by filtering through a Sartorius membrane filter MF 100. The filtrates were applied to the leaves using the spread method.

Results

Effects of different periods of exposure to darkness on the infection

Leaves were exposed to darkness for 1 day just before inoculation or for 0 to 3 days immediately after inoculation with *A. zinniae* (spray method). After 3 days of incubation the diameter of 25 lesions on each of three replicate leaves was measured (Table 1).

The diameter of the lesions appeared to correlate with the length of the darkness treatment. At longer periods of darkness, larger lesions developed. The size of the lesions after 3 days of incubation in darkness varied considerably; some lesions had a diameter of 10 mm or more (Fig. 1). Lesions formed in light were purplish brown, whereas spots formed in darkness were greyish brown, sometimes bordered by a narrow purplish brown margin.

On leaves inoculated by means of the spread method nearly the whole inoculated leaf area was necrotized after 3 days incubation in darkness, whereas normal little lesions developed when leaves were exposed to light. After exposure to darkness for 4 days or more, leaves became further necrotized and wilted and dropped prematurely.

*Effect of culture filtrates of *A. zinniae* on leaves in light and darkness*

Application of undiluted culture filtrates of *A. zinniae* to the leaves caused the same symptoms as did inoculation with spore suspensions of the fungus. After incubation

Table 1. Effects of different periods of exposure to light (L) and darkness (D) on the size of lesions on bean leaves caused by *Alternaria zinniae*.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean diameter of lesions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>before inoculation (1 day)</td>
<td>after inoculation (3 days)</td>
</tr>
<tr>
<td>D</td>
<td>LLL</td>
</tr>
<tr>
<td>L</td>
<td>LLL</td>
</tr>
<tr>
<td>L</td>
<td>DLL</td>
</tr>
<tr>
<td>L</td>
<td>DDL</td>
</tr>
<tr>
<td>L</td>
<td>DDD</td>
</tr>
</tbody>
</table>

*Tabel 1. Invloed van verschillende incubatieperioden in licht (L) en donker (D) op de grootte van de lesies op bonnbladeren veroorzaakt door *Alternaria zinniae*.*

Neth. J. Pl. Path. 76 (1970)