EXCESS ENTHALPIES OF BINARY MIXTURES OF 2-, 3-, 4-PICOLINE + n-ALKANE (C₆H₁₄–C₁₀H₂₂) AT 298.15 K. COMPARISON WITH THEORY

H. Wilczura, B. Semeniuk, A. Myslinski and T. Kaszycka-Guttman

DEPARTMENT OF CHEMISTRY, UNIVERSITY OF WARSAW, 02-093 WARSAW, PASTEUR A 1, POLAND

The molar excess enthalpies measured for binary mixtures of 2-, 3-, 4-picolone + n-alkane (C₆H₁₄–C₁₀H₂₂) at 298.15 K have been compared with the Prigogine-Flory-Patterson theory and the Extended Real Associated Solution model estimations.

Keywords: Extended Real Associated Solution model (ERAS), Prigogine-Flory-Patterson theory (PFP), pyridine base+alkane mixtures, thermodynamic properties

Introduction

The present study is a part of the research on thermodynamic properties of pyridine base + alkane mixtures. They are representatives of associated systems with the pyridine base as a self-associated component. Experimental method and detailed results of excess enthalpy determination for binary mixtures of 2-, 3-, 4-picolines with C₆–C₁₀ n-alkanes at 298.15 K are published separately [1, 2]. This paper reports the results of excess enthalpy representation for the above picoline + n-alkane binaries using two theoretical models, that derived from Prigogine-Flory-Patterson theory (PFP) [3–7] and the Extended Real Associated Solution model (ERAS) [8]. Comparison of both model estimations with experiment is given.

Theory

The PFP model considers only a contribution of physical interactions to the excess properties of mixtures. In the ERAS model the PFP physical contribution is supplemented by the chemical term, directly expressing a contribution of association to the ex-
cess properties. In the investigated systems chemical term reflects a self-association of picolines. Denoting the physical and chemical contributions to excess enthalpy by H_{ph}^E and H_{ch}^E respectively, the PFP expression for excess enthalpy H^E is given by:

$$H^E = H_{ph}^E = \left(\phi_1 P_1^* + \phi_2 P_2^* - \rho M \right) x_1 x_2$$

with characteristic pressure of mixture

$$p_M^* = \phi_1^* + \phi_2^* - \phi_1 \theta_2 x_1$$

where x_{12} is the interaction energy parameter and θ_2 the surface fraction:

$$\theta_2 = \frac{\phi_2 s_2}{\phi_1 s_1 + \phi_2 s_2}$$

with s – the molecular surface-to-volume ratio and the hard core volume fraction:

$$\phi_1 = \frac{x_1 v_1^*}{x_1 v_1^* + x_2 v_2^*}$$

The remaining symbols are v_1^* – hard core volumes, P_1^* – characteristic pressures, \bar{v}_1 – reduced volumes, all related to components, and \bar{v}_M – reduced volume of mixture.

The ERAS expression for H^E is given by:

$$H^E = H_{ph}^E + H_{ch}^E = H_{ph}^E + K \Delta h^* x_1 (\theta_1 - \theta_1^*) - x_1 \frac{p_M^*}{\bar{v}_M} K \Delta v^* (\theta_1 - \theta_1^*)$$

where the main parameters of association are: K – the association constant, Δh^*, Δv^*, – the enthalpy and volume of formation of hydrogen bond, respectively.

Remaining individual parameters of the associated component, marked with subscript ‘1’, take the form:

$$p_1^* = \frac{\alpha - \alpha^*}{k - \alpha^* \frac{\Delta v^*}{\Delta h^*} T}$$

where α – thermal expansion coefficient and α^* – a contribution to α arising from association effects

$$\alpha^* = \frac{\Delta v^*}{v_{1m}^* RT} \frac{\Delta h^*}{2K} \left[\sqrt{4K + 1} - 2K \sqrt{4K + 1} - 1 \right];$$

J. Thermal Anal., 38, 1992