COROLLARY 2 [7]. \(\text{Th}(L_2) \neq \text{Th}(L_\rho) \) for \(\rho \in \{d, \rho, \emptyset\} \).

LITERATURE CITED

COVERINGS IN THE LATTICE OF \(\emptyset \)-VARIETIES

N. Ya. Medvedev

An \(\emptyset \)-variety \(V \) in which the identity \((x \vee y) \wedge x \wedge y \vee e = e\) is valid is said to be a 0-approximable \(\emptyset \)-variety. The set \(L_0 \) of all 0-approximable \(\emptyset \)-varieties is a lattice relative to the naturally defined operations of union and intersection. Let \(\overline{V} \subseteq V \subseteq L_0 \). Then we say that \(\overline{V} \) covers \(V \) in the lattice \(L_0 \) if \(\overline{V} \supseteq V \) and \(\overline{V} \supseteq U \supseteq V \) implies \(\overline{V} = U \) or \(V = U \), where \(U \in L_0 \).

In this article is proved the existence of \(2^{\aleph_0} \) 0-approximable \(\emptyset \)-varieties having \(2^{\aleph_0} \) distinct coverings in the lattice \(L_0 \) of 0-approximable \(\emptyset \)-varieties.

1. A group \(G \) equipped with a linear order \(\rho \) will be denoted by \((G, \rho) \). As usual, \(|x| = x^+x^- \), \([x, y] = x^+y^- \). If \(\gamma \) is a real number, then \([\gamma] \) is the integer part of the number \(\gamma \). Basic facts and definitions on linearly and lattice ordered groups can be found in [1-3], and on group theory in [4] and [5].

Let \(0 \neq A_\beta \) be a subgroup of the naturally ordered additive group \(R \) of real numbers; \(\rho \neq \beta \) a positive real number such that \(\alpha \in A_\beta \) implies \(\beta\alpha, \beta^{-1}\alpha \in A_\beta \), \(B_\beta = (\beta) \) the infinite cyclic subgroup of the multiplicative group of positive real numbers generated by the number \(\beta \).

Consider the set \(T_\beta = \{(\alpha, \alpha) \mid \alpha \in B_\beta = (\beta), \alpha \in A_\beta \} \) with the operation of multiplication \((\tau \alpha, \alpha') = (\tau \alpha, \alpha + \alpha') \). We assume that \(T_\beta \theta (\alpha, \alpha) \gg e \) if \(\tau = \beta^p \) and \(\rho > 0 \) or \(\rho = 0 \) and \(\alpha > 0 \) in \(A_\beta \). Then this order is linear; we denote it by \(\theta_\beta \). Note that the set of elements of the group \(T_\beta \) of the form \((\alpha, \alpha) \), where \(\alpha \in A_\beta \), is a convex invariant subgroup.
isomorphic to $A_{\mathfrak{A}}$, and $(\tau, t) \cdot (t, \alpha) \cdot (\tau, t)^{-1} = (t, \gamma \alpha)$. We denote this subgroup by $A'_{\mathfrak{A}}$. The set of elements of $T_{\mathfrak{A}}$ of the form $(\tau, 0)$, where $\tau \in B_{\mathfrak{A}} = (\beta)$, constitutes a subgroup $B'_{\mathfrak{A}}$ isomorphic to $B_{\mathfrak{A}}$. Obviously, the group $T_{\mathfrak{A}}$ is a semidirect product of $A'_{\mathfrak{A}}$ and an infinite cyclic group $B'_{\mathfrak{A}}$ (see p. 336 in [5]).

LEMMA 1. Let (G, \mathcal{P}) be a non-Abelian linearly ordered group having an archimedian invariant convex subgroup A such that the quotient group G/A is an infinite cyclic group. Then (G, \mathcal{P}) is order-isomorphic to the linearly ordered group $(T_{\mathfrak{A}}, \mathcal{P})$ for some positive real number $\beta \neq 1$ and $0 \neq A_{\mathfrak{A}} \subseteq R$.

The proof of Lemma 1 directly follows from the Hölder theorem and the description of order-automorphisms of archimedian linearly ordered groups (see pp. 27-28 in [1]).

LEMMA 2 (p. 227 in [6]). Let V_1 and V_2 be l-varieties and (G, \mathcal{P}) a linearly ordered group. If $(G, \mathcal{P}) \in V_1 \cup V_2$ then $(G, \mathcal{P}) \not\in V_1$ or $(G, \mathcal{P}) \not\in V_2$.

2. Let γ be a real number and $\gamma \geq 4$. If $\gamma = \frac{m}{n}$ is a rational number, then let V^{γ} be the l-variety defined by the identities Σ_{γ}:

 a) $\langle (x, y) \rangle^{\gamma} \cdot (x, y)^{-1} \langle x, y \rangle^{\gamma} = (m, n > 0)$;

 b) $(x, y, x^{-1} y) \vee e = e$.

If γ is an irrational number, then $\gamma = \sup \left\{ \frac{m_i}{n_i} \mid i \in I \right\}$, where $\frac{m_i}{n_i}$ are rational numbers such that $q < \frac{m_i}{n_i} < \gamma$. Let V^γ be the l-variety defined by the system of identities Σ_{γ}:

 a) $\langle (x, y) \rangle^{\gamma} \cdot (x, y)^{-1} \langle x, y \rangle^{\gamma} = (m, n > 0)$;

 b) $(x, y, x^{-1} y) \vee e = e$.

We denote by V^3 the l-variety defined by the following system of identities Σ_3:

 a) $\langle (x, y) \rangle^{3} \cdot (x, y)^{-1} \langle x, y \rangle^{3} = (m, n > 0)$;

 b) $(x, y, x^{-1} y) \vee e = e$.

Let (G, \mathcal{P}) be a linearly ordered group in the l-variety V^3. Consider all possible $u, v \in G$ such that the leap of convex subgroups $G_{u,v} \rightarrow G_{u}$ of the linearly ordered group (G, \mathcal{P}) defined by the element $[u, v] \neq e$ is invariant relative to conjugation by the element $[u, v, u, v]$. Then in the subgroup $H_{u, v} = \langle ([u, v]^{1}, G_{u}) \rangle$, linearly ordered relative to the induced group $P_{u, v}$, the subgroup G_{u} is convex and invariant.

Consider the quotient group $\overline{H}_{u, v} = H_{u, v} / G_{u}$, naturally linearly ordered by the linear order $P_{u, v}$. Since $(G, \mathcal{P}) \in V^3$, $\overline{H}_{u, v}$ is non-Abelian. The subgroup $\overline{A} = \overline{G}_{u} / G_{u}$ is an archimedian invariant convex subgroup in $\overline{H}_{u, v}$, and the quotient group $\overline{H}_{u, v} / \overline{A}$ is an infinite cyclic group. Therefore, by Lemma 1, $(\overline{H}_{u, v}, \overline{P}_{u, v})$ is order-isomorphic to the linearly ordered group $(T_{\mathfrak{A} u, v}, \mathcal{P}_{\mathfrak{A} u, v})$ for some positive real number $\beta (u, v) \neq 1$ and $0 \neq A_{\mathfrak{A} u, v} \subseteq R$.

40