Toxicity of Arsenic and PCB to a Green Alga (Chlamydomonas)

Erik R. Christensen1,2 and Peter A. Zielski2

1Center for Great Lakes Studies, University of Wisconsin, Milwaukee, WS 53204
2Department of Civil Engineering, University of Wisconsin, Milwaukee, WS 53201

High arsenic and PCB concentrations have recently been reported for Green Bay, Lake Michigan (VEITH 1972, ANDERSON et al. 1978, HOLM 1979). The source of arsenic has been localized to a chemical company producing arsenic herbicides in Marinette, Wisconsin. While the production ceased several years ago, the arsenic pollution persists because of ground water infiltration of leachates from storage piles of arsenic-containing wastes. The sources of PCBs are less well known. The sources are probably non-point in nature, and originate in part from local dumpings of PCBs previously used as dielectrics and hydraulic fluids.

The levels of these contaminants, e.g., up to 10 µg As/L and 0.45 µg PCB/L could present a hazard to the biota. The effect of arsenic and PCB on algae have been studied for each of these toxicants acting separately, but not in combination. PCB at 10-100 µg/L inhibit chlorophyll production and RNA synthesis (KEIL et al. 1971, SINCLAIR et al. 1977). On the other hand, arsenate at 1 µM behaves as an antimetabolite occupying sites for phosphate (PLANAS & HEALEY 1978). Based on the different toxic mechanisms for the two compounds, it is hypothesized that they will show independent joint action (FINNEY 1971), i.e., that they will not form a particular toxic combination. The purpose of this study was to establish toxic thresholds and possible interactive effects of arsenic and a PCB (Aroclor 1248) for the green alga Chlamydomonas isolated from Lake Michigan.

MATERIALS AND METHODS

A slightly modified version of the culture medium of GUILLARD (1975) was used as growth medium for Chlamydomonas. Major nutrients, EDTA, and vitamins were added as specified, as well as all trace elements except boron which was added as boric acid at a final concentration of 0.6 mg/L, a factor ten lower than required by the recipe. This lower boron level was chosen so as to better correspond to the levels specified in other standard media and to concentrations found in natural waters.

The test alga Chlamydomonas was obtained from the University of Michigan Great Lakes and Marine Waters Center at Ann Arbor.
The alga was isolated from Lake Michigan by Richard Steinberger. The mean diameter was found to be about 4.9 μm using an electronic particle counter. A stock of actively growing Chlamydomonas was maintained by weekly transfers to fresh nutrient media.

Algal assays were carried out essentially according to the EPA procedure: Algal Assays Procedure Bottle Test (U.S. EPA 1978). The adopted procedure included maintenance of the cultures at 15°C in incubators with continuous 20 W "cool-white" fluorescent lighting. Aseptic techniques were applied throughout the bioassays. The algae were kept in autoclaved, cotton-plugged Erlenmeyer flasks filled with 100 mL nutrient solution. The flasks were shaken every 24 hours to maintain the cultures in homogeneous suspension.

First, two screening experiments were conducted to establish the toxicity ranges of the two toxicants using dibasic sodium arsenate and PCB (Aroclor 1248). Next, a combination experiment was set up based on these ranges. For fortifications, aqueous solutions of dibasic sodium arsenate were prepared, while the PCB was diluted with hexane, acetone, and water, successively. As an example, the 111 μg/L PCB flasks contained 711 mg acetone/L and 69 mg hexane/L, while the other PCB flasks contained proportionately lower concentrations of hexane and acetone. Control flasks with these solvents, but without PCB, were also set up.

After fortification, the flasks were inoculated with 5 x 10^6 cells/L. Algal growth was monitored at least once a week for about four weeks. Algal population and size distribution were measured by means of a Particle Data Inc. Electrozone/Celloscope, Model 112 LTH, coupled to a PDP 8 computer and a Teletype terminal.

Data analysis, based on maximum standing crop was performed at the 95% confidence level using a two-tailed t-test for the independent joint action hypothesis (CHRISTENSEN et al. 1979).

RESULTS AND DISCUSSION

The results of the algal assays are plotted in Fig. 1. The screening tests (Figs. 1a, b) with PCB and arsenic added singly were carried out first to establish the toxic ranges of these compounds. Next, the combination experiment (Fig. 1c) was conducted based on these levels. Interactions could not be excluded outside the toxic ranges of the individual toxicants, but were considered most likely to occur there.

From Fig. 1a, PCB depresses growth at concentrations between 11 and 111 μg/L. This is consistent with the levels of 10-100 μg/L found by KEIL et al. (1971) to inhibit chlorophyll production and RNA synthesis of a marine diatom (Cylindrotheca...