Part I

COMPUTER SCIENCE
A GENERALIZED HYPERGREEDY ALGORITHM FOR WEIGHTED PERFECT MATCHING

CELINA IMIELINSKA1 and BAHMAN KALANTARI2

Department of Electrical Engineering
Department of Computer Science
Stevens Institute of Technology
Rutger University
Hoboken, NJ 07030, USA
New Brunswick, NJ 08903, USA.

Abstract.

We give a generalization of the hypergreedy algorithm for minimum weight perfect matching on a complete edge weighted graph whose weights satisfy the triangle inequality. With a modified version of this algorithm we obtain a log n-approximate perfect matching heuristic for points in the Euclidean plane, in $O(n \log^2 n)$ time.

CR categories: F.2.2, G.2.2, E.5.

Keywords: Perfect matching, Approximation algorithms.

1. Introduction.

Let $K(V)$ be a complete edge weighted graph with an even number, $n = |V|$, of vertices. Throughout the paper we shall assume that the edge weights satisfy the triangle inequality. A perfect matching of V is a set of edges such that each vertex of V is incident to exactly one edge. An optimal perfect matching of V is a perfect matching with minimum total edge weight. The optimal perfect matching can be obtained by Edmonds’ algorithm [4, 5], in $O(n^3)$ time for general weights. The fastest algorithm for the case of Euclidean points in the plane, due to Vaidya [14], runs in $O(n^{2.5} \log^4 n)$ time. Special cases of the problem can be solved faster. For example, Marcotte and Suri [9] proposed an $O(n \log n)$ time exact algorithm for the case where the points are the vertices of a convex polygon.

For large n, finding approximate solutions, fast and within some error bounds, has been of both practical and theoretical interest. By the error of a heuristic algorithm we shall mean the worst case ratio of the weight of an approximate