tion of the central nervous system (immuno-
mediated leucoencephalitis). The IgM titre in
CSF was negative and the two different indexes
showed the blood-brain barrier to be damaged,
findings that support this hypothesis. Other
authors have suspected central nervous system in-
flection (7, 9, 10), although little evidence exists of
serious brain involvement in Q fever. However,
the clinical course of the infection in our patient,
as well as in other cases reported (3, 5), was
favourable regardless of treatment with ineffec-
tive antibiotics. These cases illustrate that menin-
goencephalitis is a possible clinical manifestation
of Coxiella burnetii infection.

We conclude that acute meningoencephalitis due
to Coxiella burnetii should be suspected and its
presence or absence confirmed with appropriate
serological studies in all cases of uncertain
neurologic infections.

References

1. Marrie IJ: Coxiella burnetii (Q fever). In: Mandell GL,
Gordon R, Bennett JE (ed): Principles and practice
2. Cameron DA, Freedman AR, Wansbrough-Jones
MH: Q fever encephalitis. Journal of Infection 1990,
20: 159-162.
3. G6mez-Aranda I7, Pachon J, Romero M, Lopez L,
Navarro A, Maestre J: Computer tomographic brain
scan findings in Q fever encephalitis. Neuroradiology
1984, 26: 329-332.
4. Brooks RG, Licitra CM, Peacock MG: Encephalitis
cau sed by Coxiella burnetii. Annals of Neurology 1986,
20: 91-93.
5. Vorontsova TA: Geographical variants in the immuno-
logical structure of the population in combined foci
of tick borne encephalitis and endemic rickettsiosis
in the European part of the USSR. Zhurnal Mikro-
biologii, Epidemiologii i Immunobiologii 1989, 12:
45-50.
6. Shaked Y, Samra Y: Q fever meningoencephalitis as-
ociated with bilateral abducens nerve paralysis, bilateral
optic neuritis and abnormal cerebrospinal
7. Drancourt M, Raoul D, Xeridat B, Maudire L,
Dano M, Dano P: Q fever meningoencephalitis in five
patients. European Journal of Epidemiology 1991, 7:
134-138.
8. Reilly S, Northwood JL, Caul EO: Q fever in
Plymouth, 1972-88. A review with particular reference
to neurological manifestations. Epidemiology and In-
fec tion 1990, 105: 391-408.
9. Harrel GT: Ricketsiial involvement of the central nerv-
ous system. Medical Clinics of North America 1953,
395-422.
of its occurrence in allied troops. American Journal
of Hygiene 1946, 44: 51-71.
Case Reports. A synopsis of clinical and laboratory data of the three patients is presented in Table 1.

Case no. 1 was a 6-year-old girl, born to a mother seropositive for human immunodeficiency virus (HIV), who developed thrombocytopenia at the age of 9 months which did not respond to steroids (Table 1). Vertically acquired HIV infection was diagnosed after which she was given intravenous immunoglobulin (IVIG) twice a week (0.4 g/kg/dose), which decreased the frequency and the extent of cutaneous bleeding. She also received *Pneumocystis carinii* pneumonia (PCP) prophylaxis (trimethoprim/sulfamethoxazole 36 mg/kg/day), and oral amphotericin B (4 x 1 million U/day). Following three episodes of severe epistaxis at the age of 4 years, oral prednisone (2 mg/kg/day) was given and resulted in normalization of the platelet count. The prednisone could be tapered off only at the age of 5 years 8 months.

Two months later, she was admitted and treated with vancomycin and gentamicin for 14 days because of a staphylococcal sepsis related to an implanted catheter. The patient had almost daily fever spikes and diarrhea. Repeated blood cultures were negative for bacteria and mycobacteria. Stool microscopy revealed numerous acid-