PROBABILISTIC APPROACH TO THE DIRICHLET PROBLEM OF SECOND ORDER ELLIPTIC PDE\footnote{Received October 12, 1987.}

SONG RENMING (宋仁明)
(Hebei University)

Abstract

In this paper we provide a probabilistic approach to the following Dirichlet problem

\[
\begin{aligned}
\left(\sum \frac{\partial}{\partial x^i} \left(a^{ij} \frac{\partial}{\partial x^j} \right) + \sum b^{i} \frac{\partial}{\partial x^i} \right) u &= 0, \quad \text{in } D, \\
\sigma &= g, \quad \text{on } \partial D,
\end{aligned}
\]

without assuming that the eigenvalues of the operator

\[
\sum \frac{\partial}{\partial x^i} \left(a^{ij} \frac{\partial}{\partial x^j} \right) + \sum b^{i} \frac{\partial}{\partial x^i} + \xi
\]

with Dirichlet boundary conditions are all strictly negative. The results of this paper generalize those of Ma\cite{10}.

In 1981, Chung, and Rao\cite{20} solved the following Dirichlet problem

\[
\begin{aligned}
\left(\frac{1}{2} \Delta + \xi \right) u &= 0, \quad \text{in } D, \\
u &= g, \quad \text{on } \partial D,
\end{aligned}
\]

by probabilistic method under the assumption that the eigenvalues of the Schrödinger operator \(\left(\frac{1}{2} \Delta + \xi \right) \) with Dirichlet boundary conditions are all strictly negative. Ma\cite{10} removed the above assumption and completely solved the Dirichlet problem (0.1) by using probabilistic method.

The method used in Ma\cite{10} also applies to the following Dirichlet problem

\[
\begin{aligned}
\left(L + \xi \right) u + g_2 &= 0, \quad \text{in } D, \\
u &= g_2, \quad \text{on } \partial D,
\end{aligned}
\]

when \(L \) is a symmetric, strongly elliptic operator of the form \(\sum \frac{\partial}{\partial x^i} \left(a^{ij} \frac{\partial}{\partial x^j} \right) \).

However, the method of Ma\cite{10} fails when \(L \) is nonsymmetric. Up to now, no suitable method has been found to treat the problem (0.2) for the case where \(L \) is nonsymmetric. The present paper is aimed to fill this gap.

More precisely, this paper is devoted to find a probabilistic method to solve the following Dirichlet problem

\[
\begin{aligned}
\left(L + \xi \right) u + g_2 &= 0, \quad \text{in } D, \\
u &= g_2, \quad \text{on } \partial D,
\end{aligned}
\]
where D is a bounded $C^{2,\alpha}(0<\alpha<1)$ domain of \mathbb{R}^d, ξ and g_1 are real-valued H"older continuous functions defined in D, g_2 is a real-valued continuous function defined on ∂D and L is an operator of the following form:

$$L = \sum \frac{\partial}{\partial x^i} \left(a^{ij} \frac{\partial}{\partial x^j} \right) + \sum \delta^i - \frac{\partial}{\partial x^i},$$

with its coefficients satisfying the following assumptions:

(A1) all the coefficients are real-valued functions;
(A2) (a^{ij}) is symmetric and there exists a positive constant M such that for any $x, y \in \mathbb{R}^d$,

$$\sum a^{ij}(x) y^j > M |y|^2;$$

(A3) $a^{ij} \in C^1_2(\mathbb{R}^d) = \{ f \in C^2(\mathbb{R}^d) : \text{for any } 0<|a|<2, D^2 f \text{ is bounded} \};$
(A4) $b^i \in C^1_2(\mathbb{R}^d)$. Under the above assumptions it is known (see [8]) that there exists a unique d-dimensional diffusion process $(\{X_t\}_{t \geq 0}, \{P_t\}_{t \in \mathbb{R}^d})$ such that for every $f \in C^2_0(\mathbb{R}^d)$ and every $x \in \mathbb{R}^d$,

$$f(x_t) - f(x_0) - \int_0^1 (L f)(X_s) \, ds$$

is a P^*-martingale.

It is also known (see [4]) that the diffusion process X_t has a transition density function $p(t, x, y)$ which satisfies the following conditions:

(i) p and $\frac{\partial p}{\partial t}$ are continuous on $(0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$;
(ii) $D^2 p(|a| < 2)$ is continuous on $(0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$ with

$$D^2 p(t, x, y) \leq Ct^{-n} \Gamma(|a|, x, y), \quad |a| = 0, 1,$$

where C and λ are positive constants, Γ is the transition density function of the d-dimensional Brownian motion;

(iii) for any fixed $y \in \mathbb{R}^d$, $p(\cdot, \cdot, y)$ is a solution of the following equation

$$\frac{\partial p}{\partial t} = L p$$

with the initial condition

$$p(t, x, y) \rightarrow \delta(x-y) \quad \text{as } t \downarrow 0,$$

which means that for every bounded continuous function f in \mathbb{R}^d we have

$$\lim_{t \downarrow 0} \int_{\mathbb{R}^d} p(t, x, y) f(y) \, dy = f(x).$$

The contents of this paper are organized as follows. In Section 1 we determine the explicit expressions of the generators of the semigroup T_t of the killed diffusion of X_t and the Feynman-Kac semigroup F_t defined by

$$F_t f(x) = E^x \left[\exp \left(\int_0^t \xi(X_s) \, ds \right) f(X_t), \ t < \tau_D \right].$$

In Section 2 we use the results of Section 1 to provide a probabilistic treatment for the Dirichlet problem (0.3).