STRENGTH CALCULATION FOR A SEALING RING OF A CLOSURE WITH A DOUBLE-CONE SEAL

É. B. Fel'dman, D. G. Malova, and O. V. Rumyantsev

UDC 66.025.001.24

In [1] an approximate method of calculating a sealing ring for a double-conical closure is described, based on the theory of beam bending on an elastic base [2].

The known methods of calculating beams on an elastic base of variable stiffness with a discontinuous loading character [3, 4] necessitate a large number of calculations, as a result of which one determines the reactive load q, the shearing force Q, and the bending moment M. Analysis of the deformation conditions of a sealing ring of a closure with a double-cone seal, and also the results of analytical design by the section method, which are confirmed by an experimental check [1], make it possible to suggest a simplified engineering method of calculating the magnitudes of q, Q, and M in danger points [1].

Let us consider the action of axial and radial loads (Fig. 1).

The axial loads p and Pm cause an off-center compression. Because of the comparatively low flexibility of the beam being considered, one can neglect the shearing forces and displacements which arise thereupon, and can carry out a calculation of the bending moment in the dangerous middle section 1-1 by the formula

\[M = \frac{ab}{2}(p + Pm). \]

The radial loads p and P_R cause the appearance of considerable bending moments and shearing forces, and also cause a considerable displacement of the part. Deformation of the sealing ring from radial loading is accompanied by a deflection; however, the magnitude of the latter is small as compared with

![Fig. 1. Calculation scheme for a closure sealing ring.](chart1)

![Fig. 2. Dependence of values of q, Q, and M as calculated by various methods: ----) simplified method; ---) section method.](chart2)
the total displacement of the part (which is connected with the appreciable pliability of the parts which contain the seal — the body and the stud bolts). The circumstance permits one to use a simplified method of calculation based on the assumption of constancy of displacements along the height of the part, that is, \(\frac{q}{B} = \text{const.} \), in an approximate practical determination of the magnitudes of \(q, Q, \) and \(M \), depending on the radial loading.

Considering the comparatively small change in magnitude of the radius of the sealing ring, \(R \), one can consider the character of the change in the bed coefficient, \(B \), to be linear, and can determine it from the calculated values for the extreme trapezoidal sections.

Taking account of the assumptions stated, from the equilibrium equation for a beam on an elastic base formulas were obtained for determining the basic calculational quantities as a function of the radial load in the dangerous sections: from preliminary tightening

\[
q_{pr} = \frac{2m}{c + (1 + K_r)m} p_{m}^{R}; \quad Q_{max} = \frac{cm}{c + (1 + K_r)m} p_{m}^{R},
\]

\[
M_{max}^{R} = \left(m + \frac{c}{4} - m_{c,g} \right) cm \quad \frac{p_{m}^{R}}{p_{m}},
\]

from pressure

\[
q_{pr} = \frac{A}{c + (K_2 + K_3)m} p; \quad Q_{max} = \frac{\left(K_2 + K_1 \right) cm}{c + (K_2 + K_3)m} p,
\]

\[
M_{max}^{R} = \frac{\left(K_2 + K_1 \right) \left(m + \frac{c}{4} - m_{c,g} \right) cm}{c + (K_2 + K_3)m} p,
\]

where \(q_{pr} \) is the reactive load of a rectangular section of the beam being examined; \(K_1 = B_1 / B_{pr} \); \(K_2 = B_2 / B_{pr} \); \(B_1, B_2, \) and \(B_{pr} \) are coefficients of the elastic base at the end, in section 2–2 (see Fig. 1), and in a rectangular section of the beam under examination, respectively; \(Q_{max} \) and \(M_{max}^{R} \) are the shearing force in the section 2–2 and the bending moment in section 1–1 from the action of radial loading; \(m_{c,g} \) is the