A STRONG LAW OF THE EMPIRICAL DENSITY FUNCTION

by

P. RÉVÉSZ (Budapest)

Summary

Let X_1, X_2, \ldots be a sequence of i.i.d.r.v's with a twice differentiable density function f. Suppose that f is vanishing outside of the interval [0, 1], strictly positive inside and $|f''|$ is bounded. Further let λ be an arbitrary density function satisfying some regularity conditions and define the empirical density function f_n as

$$f_n(x) = (nh_n)^{-1} \sum_{k=1}^{n} \lambda((x - X_k)h_n^{-1})$$

where $\{h_n\}$ is a decreasing sequence of positive numbers tending to 0 and satisfying some further restrictions. Then for any $\varepsilon > 0$ we have

$$\lim_{n \to \infty} \left(\frac{nh_n}{2A^2 \log h_n^{-1}} \right)^{1/2} \sup_{\varepsilon < x < 1-\varepsilon} \left| \frac{f_n(x) - f(x)}{\lambda^2(x)} \right| = 1 \text{ a.s.}$$

where $A^2 = \int_{-\infty}^{+\infty} \lambda^2(x) dx$.

1. Introduction

Let X_1, X_2, \ldots be a sequence of i.i.d.r.v's with density function f. Suppose that

1.a. f is vanishing outside the interval [0, 1],
1.b. f is twice differentiable in (0, 1) and $|f''| \leq C$,
1.c. f is strictly positive in (0, 1) and $f \geq \alpha > 0$.

Let λ be a density function for which

2.a. $\lambda \leq C$,
2.b. $\lambda(-x) = \lambda(x)$,
2.c. $\lim_{x \to \pm\infty} x^4\lambda(x) = 0$,
2.d. λ is twice differentiable in an interval $-\infty \leq -a < x < a \leq +\infty$, vanishing outside and $|\lambda''| \leq C$ in $(-a, +a)$.

Let $\{h_n\}$ be a sequence of positive numbers satisfying the conditions:

AMS (MOS) subject classifications (1970). Primary 60F15; Secondary 60G05.
Key words and phrases. Empirical density function, Gaussian Processes.
Define the empirical density function f_n as

$$f_n(x) = (nh_n)^{-1} \sum_{k=1}^{n} \lambda((x - X_k)h_n^{-1}) = h_n^{-1} \int_{0}^{1} \lambda((x - y)h_n^{-1})dF_n(y)$$

where

$$F_n(y) = \sum_{k=1}^{n} I_{(-\infty,y]}(X_k)$$

is the empirical distribution function based on the sample X_1, X_2, \ldots, X_n and $I_{(-\infty,y]}$ is the indicator of $(-\infty,y]$.

Several theorems state that f_n is a good approximation of f (see e.g. [1], [5]). Our main goal is to prove

Theorem 1. Suppose that Conditions 1.--3. are satisfied. Then for any $\epsilon(>0)$ we have

$$\lim_{n \to \infty} \left(\frac{nh_n}{2A^2 \log h_n^{-1}} \right)^{1/2} \sup_{\epsilon < x < 1-\epsilon} \left| \frac{f_n(x) - f(x)}{f^{1/2}(x)} \right| = 1 \quad a.s.$$

where $A^2 = \int_{-\infty}^{+\infty} A^2(x)dx$.

Taking stochastic convergence in (2) instead of almost sure convergence we get a simple and well-known statement (see [1]). The problems of almost sure convergence were investigated by Reiss [4] who obtained somewhat weaker results.

The proof of our Theorem 1 is based on some results regarding for Gaussian Processes. Let us recall the most important definitions.

Definition of the Wiener Process in R^1 and $R^2.$ A separable Gaussian Process $W(x)$ $(x \geq 0)$ resp. $W(x, y)$ $(x, y \geq 0)$ is called a Wiener Process if $EW(x) = 0$ and $EW(x_1)W(x_2) = x_1 \wedge x_2$, resp. $EW(x, y) = 0,$

$$EW(x_1, y_1)W(x_2, y_2) = (x_1 \wedge x_2)(y_1 \wedge y_2).$$

Definition of the Brownian Bridge. Let $W(x)$ be a Wiener Process then the process $B(x) = W(x) - xW(1)$ $(0 \leq x \leq 1)$ is called a Brownian Bridge.

Definition of the Kiefer Process. Let $W(x, y)$ be a Wiener Process then the process $K(x, y) = W(x, y) - xW(1, y)$ $(0 \leq x \leq 1, 0 \leq y)$ is called a Kiefer Process.