A HIGH ORDER METHOD FOR NON-SMOOTH FREDHOLM EQUATIONS

SHI Jun (石 军)

(Department of Basic Science, Petroleum University, Beijing 102200, China)

LIN QUN (林 钦)

(Institute of System Science, the Chinese Academy of Sciences, Beijing 100080, China)

Abstract

In this paper, we deal with a class of the second kind of non-smooth Fredholm integral equations, which are related closely to Wiener-Hopf equations. Using Sloan's iterative technique, we obtain the superconvergent approximations. By means of the correction and collocation methods, we present a kind of iterative correction collocation approximations for this kind of equations, and show that this method is not only a high order and more simple method but also an adaptable one (see e.g. [11]).

Key words. Collocation approximation, correction, adaptable method

1. Introduction

Consider the equation

\[u(s) - \int_0^1 k(s,t)u(t)\, dt = f(s), \quad s \in [0,1], \]

where \(k(s,t) = k(\tau) \mathbb{1} \) and \(f(s) \) are given, \(u \) is the unknown solution. Since it is related closely to Wiener-Hopf equations and is very important in practice, there are many numerical results about it (e.g. [1-11]). It is well known that the accuracy of the approximations of the second kind of Fredholm integral equations may be raised by Sloan iterations. Recently, Shi [9] presented a kind of iterative correction method for smooth Fredholm integral equations to raise the order of the Sloan's iterative approximation, for example, from \(O(h^r) \) to \(O(h^{2r}) \).

In this paper, similarly to [3], using Sloan iterative technique, we shall show that the Sloan iterative approximation is superconvergent for this equation with some singularity. By means of a kind of correction method, we shall show that one step of correction can raise the accuracy of the Sloan iterative approximations, for example, from \(O(h^r) \) to \(O(h^{2r}) \) with a little more additional computation, and this adaptable process can be continued for

Received February 18, 1993. Revised May 21, 1995.
any steps (see, e.g. [11]). This method can be applied to many other problems; one such application in elastostatics is given in Section 3.

2. The Main Results

For $\beta \in [0, 1)$, define the integral operator K_β by

$$K_\beta u(s) = \int_\beta^1 k(s, t)u(t) \, dt,$$

and let $K_0 = K$. Then (1) can be written in operator form $(I - K)u = f$. We shall assume there exists a constant $\alpha^* \in (0, 1)$ such that

$$\int_0^{+\infty} t^{k-\alpha} |D^k k(t)| \frac{dt}{t} < \left\{ \begin{array}{ll} 1, & k = 0, \alpha \in (-\alpha^*, +\alpha^*), \\ +\infty, & k \geq 0, \alpha \in [0, \alpha^*). \end{array} \right. \quad (A)$$

For $k \geq 0, \alpha \in [0, 1)$, define norms

$$\|v\|_{C^k_\alpha} = \max_{0 \leq s \leq 1} \sup_{0 < l < k} \{|D^l u(s)| : s \in [0, 1]\},$$

and define the Banach space C^k_α to be the completion of smooth functions under the norm $\| \cdot \|_{C^k_\alpha}$. When $k = \alpha = 0$, C^0_α is the usual continuous functions space with uniform norm $\|u\|_{C^0_\alpha} = \|u\|_{\infty} = \sup |u|$. C will denote a constant in this paper, it is always independent of the number of the mesh points. We employ a graded mesh:

$$0 = t_0 < t_1 < \cdots < t_n = 1,$$

where $e_i = [t_i, t_{i+1}]$, $h_i = t_{i+1} - t_i$, $h = \frac{1}{n}$, $t_{i+1} \leq C t_i$, $h_i \leq C h^{1-1/q}$, $h_i/t_i \leq C/(i - 1)$; for any fixed $i_0 \in \{0, 1, \ldots, n\}$, $t_{i_0} \leq C h^q$, where the refinement parameter $q, q > 0$, will be determined below.

For example, choose $t_i = (i/n)^q$; then $\{t_i\}$ satisfy (2).

For a given collocation points set $\{s_j : j = 0, 1, \ldots, m\}$ on $[0, 1]$, let $t_{ij} = t_i + s_j h_i$, $S_m = \{v : v_i, the restriction of v on e_i is a polynomial of order m, e_i \leq i; v_i = 0, i < i_0\}$, then we have an interpolatory projection $P_h : C^0_\alpha \rightarrow S_m$ defined by

$$P_h u(t_{ij}) = u(t_{ij}), \quad (i, j) \in Q = \{(i, j) : i_0 \leq i, j = 0, 1, \ldots, m\},$$

$$P_h u_i = 0, \quad i < i_0,$$

where the constant integer $i_0 \in \{0, 1, \ldots, n\}$ will be determined below. It is easy to see that $\|P_h\|_{\infty}$ is uniformly bounded. We also have a quadrature rule:

$$\int_0^1 v(t) \, dt \approx \int_0^1 P_h v(t) \, dt.$$

The order r is defined by: For all e_i,

$$\left| \int_{t_i}^{t_{i+1}} v(t)(I - P_h)u(t) \, dt \right| \leq C \sum_{i=0}^{r-1} h_i^r \int_{t_i}^{t_{i+1}} ||D^{r-l}u||_\infty ||D^l v||_\infty \, dt.$$