Converse results on equiconvergence of interpolating polynomials

K. G. IVANOV and A. SHARMA

1. Introduction. Among the many results which have appeared in the last few years on Walsh equiconvergence and its extensions, a recent paper [3] of J. Szabados is one of the most interesting, both for its simplicity and for its novelty. In order to describe this result, we consider the class of functions \(A_q \) analytic in \(|z| < q \) but not in \(|z| \leq q \). (The class \(A(\varrho) \), on the other hand will denote the class of functions analytic in \(|z| < \varrho \).) Let \(L_{n-1}(f; z) \) denote the Lagrange interpolant to \(f \) on the \(n \)th roots of unity and let

\[
P_{n-1,j}(f; z) = \sum_{k=0}^{n-1} a_k z^{k+j}, \quad j = 0, 1, 2, \ldots,
\]

where

\[
f(z) = \sum_{k=0}^{\infty} a_k z^{k}, \quad \text{and} \quad \lim_{n \to \infty} |a_n|^{1/n} = 1/q.
\]

We then have the following generalization of Walsh's Theorem:

Theorem A [1]. If for any \(f \in A_q \) and for any integer \(l \geq 1 \) we set

\[
\Delta_{l,n-1}(f; z) := L_{n-1}(f; z) - \sum_{j=0}^{l-1} P_{n-1,j}(f; z),
\]

and if \(\varrho > 1 \), we have

\[
\lim_{n \to \infty} \Delta_{l,n-1}(f; z) = 0, \quad |z| < \varrho^{l+1},
\]

where the convergence is geometric and uniform on closed subsets of \(|z| < \varrho^{l+1} \).

For \(l = 1 \), this gives Walsh's theorem [5]. For further details on this and its ramifications, we refer to a survey paper by R. S. Varga [4]. In this context, J. Szabados proved

Theorem B. If \(f(z) \) is analytic in \(|z| < 1 \) and continuous in \(|z| \leq 1 \), and if moreover \(\{\Delta_{l,n-1}(f; z)\} \) is uniformly bounded on compacts in \(|z| < \varrho^{l+1} \), then \(f \) is analytic in \(|z| < \varrho \).

This interesting theorem may be considered as a sort of converse of Theorem A. An analogue of Theorem B for the Hermite case has recently been proved [2]. More

Received September 15, 1986.
precisely, let \(f \) be analytic in \(|z|<1 \) and let \(f, f', \ldots, f^{(r-1)} \) be continuous in \(|z|<1 \). If \(A_{r-1}(f; z) \) is uniformly bounded on compacts in \(|z|<q^{1+r/n} \), then \(f \) is analytic in \(|z|<q \). (For the definition of \(A_{r-1}(f; z) \) and further details see [1] and [2]).

The object of this note is to make the above Theorem B of Szabados more precise. Indeed we consider two entities — a null sequence \(\{a_k\}_0^\infty \) and a function \(f \) defined on all the roots of unity, i.e., on \(\bigcup_{n=1}^\infty U_n \), where \(U_n=\left\{ \exp \frac{2k\pi i}{n}, \ k=0, 1, \ldots, n-1 \right\} \).

For such a function \(f \), \(L_{n-1}(f; z) \) has a meaning and so we define \(A_{l,n-1}(f; z) \), depending on \(f \) and the null sequence \(\{a_k\}_0^\infty \), where \(A_{l,n-1}(f; z) \) is given explicitly by (2.1). We shall show that if we require \(A_{l,n-1}(f; z) \) to be uniformly bounded on compact subsets of \(|z|<q^{1+l} \), then the function \(f \) can be extended to be the sum of two functions \(g \) and \(h \), where \(g(z)=\sum_{k=0}^\infty a_k z^k \) is analytic in \(|z|<q \) and \(h \) is analytic in \(|z|<q^{1+l} \). Moreover, if we further require that \(A_{l,n-1}(f; z) \) tend to zero on an infinite set with a limit point in \(|z|<q^{1+l} \), then \(\sum_{k=0}^\infty a_k z^k \) is the analytic extension of \(f \) and is analytic in \(|z|<q \).

In Section 2, we state the main results. Section 3 deals with some lemmas needed later. Section 4 comprises the proof of Theorems 1 and 2. It would be interesting to find suitable analogues of Theorems 1 and 2 in the Hermite case and in the case of \(l_2 \)-approximation. A few remarks on the extension of Theorems 1 and 2 to the case of next-to-interpolatory polynomials or their iterations are added at the end of Section 4.

2. Statement of Results. Let \(U_n=\{z: z=\exp 2k\pi i/n, k=0, 1, \ldots, n-1 \} \) and let \(U=\bigcup_{n=1}^\infty U_n \) be the roots of unity and let \(\{a_k\}_0^\infty \) be a null sequence of real or complex numbers. For any function \(f \) defined on \(U \) and for any fixed integer \(l \) we define \(A_{l,n-1}(z) \) by (1.2), or equivalently

\[
A_{l,n-1}(z) := A_{l,n-1}(f; \{a_k\}_0^\infty; z) := L_{n-1}(f; z) - \sum_{k=0}^{n-1} \sum_{j=0}^{l-1} a_k z^j,
\]

where \(L_{n-1}(f; z) \) is the Lagrange interpolant to \(f \) on \(U_n \). If \(A(q) \) denotes the class of functions analytic in \(|z|<q \), we shall prove

Theorem 1. The sequence \(\{A_{l,n-1}(z)\}_{n=1}^\infty \) is uniformly bounded on compact subsets of \(|z|<q^{1+l} \) if and only if

(i) the function \(g(z):=\sum_{k=0}^\infty a_k z^k \in A(q) \) and

(ii) there exists a function \(h(z) \in A(q^{1+l}) \) such that

\[
(g+h)(z) = f(z), \quad z \in U.
\]