Single longitudinal mode, symmetrical three-cavity GaInAsP/InP lasers

YUSHU ZHANG, WAN ZHAO, JIAWEI SHI, DINGSAN GAO
Jilin University, Chang Chun, China

Received 30 June; accepted 6 September 1988

Two ways of improving the mode-selection characteristics of diode lasers are analysed. The mode-selection mechanism and technological processes are presented for symmetrical three-cavity lasers, and the experimental results are in good agreement with theoretical results.

1. Introduction
In order to realize long-distance signal propagation with large capacity and high efficiency, it is necessary to use the single longitudinal mode InGaAsP/InP laser in an optical communication system. Three ways can be used to strengthen the single longitudinal mode operation: increasing the interval between two modes; raising the side-mode losses; and locking the modes by using external injection.

2. Mode-selection characteristics in symmetrical three-cavity lasers
The structure of the symmetrical three-cavity laser is shown in Fig. 1. Each of the two ends of the cavity L_1 is connected to a cavity L_2 in which some parameters are the same as in the cavity L_1. Considering the effective reflection of the cavity L_2 for the light wave in the cavity L_1, we can obtain the effective reflectivity in terms of the multiple reflection theory [1, 2]

$$r_e = \frac{\gamma_1 + \gamma_2 e^{x_{L2}}}{1 + \gamma_1 \gamma_2 e^{x_{L2}}} \tag{1}$$

Let

$$r_e = |\gamma_e| e^{i\delta_e}$$

When $g_2 = 0$ (g_2 is the gain in the short cavity L_2),

$$|r_e| = \left(\frac{-\gamma_1^2 + (\gamma_2 e^{x_{L2}})^2 + 2\gamma_1 \gamma_2 e^{x_{L2}} \cos 2\beta_2 L_2}{1 + (\gamma_1 \gamma_2 e^{x_{L2}})^2 + 2\gamma_1 \gamma_2 e^{x_{L2}} \cos 2\beta_2 L_2} \right)^{1/2} \tag{2}$$

$$|\delta_e| = \arccot \frac{\gamma_1 [1 + (\gamma_2 e^{x_{L2}})^2] + \gamma_2 e^{x_{L2}} (1 + \gamma_1^2) \cos 2\beta_2 L_2}{\gamma_2 e^{x_{L2}} (1 - \gamma_1^2) \sin 2\beta_2 L_2} \tag{3}$$

Using r_e, the symmetrical three-cavity laser, as shown in Fig. 1a, can be transformed into an equivalent single-cavity L_2 which is replaced by an equivalent interface M_e. It is obvious
that methods for and results from the usual single-cavity case can be used for this equivalent single cavity. The cavity loss, threshold and phase conditions are given by, respectively:

\[\alpha_m(\lambda) = \frac{2}{L_1} \ln \left(\frac{1}{|r_1|} \right) \]

\[G = \alpha_m \]

\[2\delta_c + 2\beta L_1 = 2m\pi \quad m = 1, 2, 3, \ldots \]

Some questions are discussed as follows.

2.1. Cavity loss \(\alpha_m(\lambda) \)

In Equation 2 the expression for \(|r_1| \) can be changed into a simpler form when \(2\beta L_2 = 2m_2\pi, (2m + \frac{1}{2})\pi, (2m + 1)\pi \), and three special values \(\alpha_m^1, \alpha_m^2 \) and \(\alpha_m^3 \) are obtained. Based on these above special values, the \(\alpha_m(\lambda) \) curve can be obtained roughly, as shown in Fig. 2 when \(\tilde{n}_1 > \tilde{n}_2 > n_0 \). It is shown that the variation of \(\alpha_m(\lambda) \) with \(\lambda \) possesses the appropriate relationship of \(\lambda_m \), where, \(\lambda_m \) is the mode spectrum when the cavity \(L_2 \) is thought of as a single cavity. The larger \(\Delta \alpha_m \) is of great advantage for strengthening the suppression of the side-mode oscillation. It can be proved that, when the parameters selected satisfy the condition

\[(g_2 - \chi_1) L_2 = \ln \frac{(\tilde{n}_1 - \tilde{n}_2)/(\tilde{n}_1 + \tilde{n}_2)}{(\tilde{n}_2 - n_0)/(\tilde{n}_2 + n_0)} \]

\[\tilde{n}_1 > \tilde{n}_2 > n_0 \]

\[\Delta \lambda m = \lambda_m + \lambda_{m+1} \]

\[\alpha_m(\lambda) \]