SOME GREEDY t-INTERSECTING FAMILIES OF FINITE SEQUENCES*

WU SHIQUAN (巫世权)

(Department of Mathematics, National University of Technology, Changsha 410073, China)

Abstract

Let \(n, s_1, s_2, \ldots \) and \(s_n \) be positive integers. Assume \(\mathcal{M}(s_1, s_2, \ldots, s_n) = \{(x_1, x_2, \ldots, x_n) \mid 0 \leq x_i \leq s_i, \ x_i \ \text{is an integer for each } i\} \). For \(a = (a_1, a_2, \ldots, a_n) \in \mathcal{M}(s_1, s_2, \ldots, s_n) \), \(\mathcal{F} \subseteq \mathcal{M}(s_1, s_2, \ldots, s_n) \), and \(A \subseteq \{1,2,\ldots,n\} \), denote \(s_p(a) = \{j \mid 1 \leq j \leq n, \ a_j \geq p\} \), \(S_p(\mathcal{F}) = \{s_p(a) \mid a \in \mathcal{F}\} \), and \(W_p(A) = p^{n-|A|} \prod_{i \in A} (s_i - p) \).

\(\mathcal{F} \) is called an \(I_p \)-intersecting family if, for any \(a, b \in \mathcal{F} \), \(a_i \cap b_i = \min(a_i, b_i) \geq p \) for at least \(t \) \(i \)'s. \(\mathcal{F} \) is called a greedy \(I_p \)-intersecting family if \(\mathcal{F} \) is an \(I_p \)-intersecting family and \(W_p(\mathcal{A}) > W_p(\mathcal{B} + A) \) for any \(A \subseteq \mathcal{S}_p(\mathcal{F}) \) and any \(B \subseteq A \) with \(|B| = t + 1 \).

In this paper, we obtain a sharp upper bound of \(|\mathcal{F}| \) for greedy \(I_p \)-intersecting families in \(\mathcal{M}(s_1, s_2, \ldots, s_n) \) for the case \(2p \leq s_i \ (1 \leq i \leq n) \) and \(s_1 > s_2 > \ldots > s_n \).

Key words. \(I_p \)-greedy subsets, \(I_p \)-regular subset, \(t \)-intersecting family, \(I_p \)-intersecting family, greedy \(I_p \)-intersecting family

1. Introduction

Let \(n, s_1, s_2, \ldots \) and \(s_n \) be positive integers. Assume \(\mathcal{M}(s_1, s_2, \ldots, s_n) = \{(x_1, x_2, \ldots, x_n) \mid 0 \leq x_i \leq s_i, \ x_i \ \text{is an integer for each } i\} \), which is equivalent to the poset of the product of \(n \) chains \(I_i \) and \(|I_i| = s_i + 1 \ (1 \leq i \leq n) \). Meanwhile, for any \(x = (x_1, x_2, \ldots, x_n) \in \mathcal{M}(s_1, s_2, \ldots, s_n) \), we can have a multiset \(A \) of \(X = \{1,2,\ldots,n\} \) with \(i \) appearing in \(A \) for \(x_i \) times. So \(\mathcal{M}(s_1, s_2, \ldots, s_n) \) can be regarded as the collection of all multisubsets of \(X \).

Throughout, \(X = \{1, 2, \ldots, n\} \) denotes a finite set. For an integer \(k \) with \(0 \leq k \leq n \), \(C^n_k \) denotes a collection of all \(k \)-subsets of \(X \). For subset \(A, |A| \) denotes the number of the elements of \(A \). For \(a = (a_1, a_2, \ldots, a_n) \in \mathcal{M}(s_1, s_2, \ldots, s_n) \), the support of \(a \) is defined as \(S(a) = \{j \mid 1 \leq j \leq n, \ a_j > 0\} \). For \(\mathcal{F} \subseteq \mathcal{M}(s_1, s_2, \ldots, s_n) \), the support of \(\mathcal{F} \) is defined as \(S(\mathcal{F}) = \{s(a) \mid a \in \mathcal{F}\} \).

Furthermore, \(s_p(a) = \{j \mid 1 \leq j \leq n, \ a_j \geq p\} \) is called the \(p \)-support of \(a \), and \(S_p(\mathcal{F}) = \{s_p(a) \mid a \in \mathcal{F}\} \) is called the \(p \)-support of \(\mathcal{F} \). For a subset \(A \subseteq \{1, 2, \ldots, n\} \), \(W(A) = \prod_{i \in A} (s_i) \) is called the weight of \(A \) and \(W_p(A) = p^{n-|A|} \prod_{i \in A} (s_i - p) \) is called the \(p \)-weight of \(A \). Besides, we denote \(\{t\} = \{1, 2, \ldots, t\} \).

* This project is partially supported by the National Natural Science Foundation of China (No.19401008) and by Postdoctoral Science Foundation of China.
Most of our other notation and terminology are the same as those in [1] and [10].

Definition 1. Let \(a = (a_1, a_2, \ldots, a_n) \), \(b = (b_1, b_2, \ldots, b_n) \) \(\in \mathcal{M}(s_1, s_2, \ldots, s_n) \). The intersection of \(a \) and \(b \) is defined as \(a \cap b = (a_1 \wedge b_1, a_2 \wedge b_2, \ldots, a_n \wedge b_n) \), where \(a_i \wedge b_i = \min(a_i, b_i) \) for each \(i \).

\(\mathcal{F} \subseteq \mathcal{M}(s_1, s_2, \ldots, s_n) \) is called a \(t \)-intersecting family if, for any \(a, b \in \mathcal{F}, a_i \wedge b_i > 0 \) for at least \(t \) 's. \(\mathcal{F} \) is called an \(\mathcal{P}_t \)-intersecting family if, for any \(a, b \in \mathcal{F}, a_i \wedge b_i \geq p \) for at least \(t \) 's.

What are the maximum \(\mathcal{P}_t \)-intersecting families in \(\mathcal{M}(s_1, s_2, \ldots, s_n) \)?

So far, results on the maximum \(t \)-intersecting families in \(\mathcal{M}(s_1, s_2, \ldots, s_n) \) have been obtained for a few \(t \)'s.

When \(t = 1 \), the maximum intersecting families in \(\mathcal{M}(s_1, s_2, \ldots, s_n) \) are known (see [1,5-7] and [10]). However, when \(t > 1 \), we have known little (also see [1] and [10]).

Definition 2. Let \(\mathcal{F} \subseteq \mathcal{M}(s_1, s_2, \ldots, s_n) \). \(\mathcal{F} \) is called a greedy \(\mathcal{P}_t \)-intersecting family if \(\mathcal{F} \) is an \(\mathcal{P}_t \)-intersecting family and \(W_p(A) \geq W_p(B + A^c) \) for any \(A \in S_p(\mathcal{F}) \) and any \(B \subseteq A \) with \(|B| = t - 1 \). \(\mathcal{F} \) is called a proper greedy \(\mathcal{P}_t \)-intersecting family if it is a greedy \(\mathcal{P}_t \)-intersecting family and \(W_p(A) > W_p(B + A^c) \) for any \(A \in S_p(\mathcal{F}) \) and any \(B \subseteq A \) with \(|B| = t - 1 \), where \(A^c = \{1, 2, \ldots, n\} - A \).

Comment. If \(W_p(A) \geq W_p(B + A^c) \) for any \(A \in S_p(\mathcal{F}) \) and any \(B \subseteq A \) with \(|B| = t - 1 \), then \(W_p(A) \geq W_p(B + A^c) \) for any \(A \in S_p(\mathcal{F}) \) and any \(B \subseteq A \) with \(|B| \leq t - 1 \).

If \(s_1 = s_2 = \cdots = s_n = s \) and \(p = 1 \), Engel and Frankl obtained the maximum \(t \)-intersecting families of multisubsets in [4]. Wu generalized Engel and Frankl's result in [9].

The above greedy property naturally comes from that of intersecting families. For any subset \(A \), the support of maximum intersecting families always contains the greatest weight one between \(A \) and \(A^c \) (see [1] and [10]). This is the greedy property of intersecting families.

For an \(\mathcal{P}_t \)-intersecting family \(\mathcal{F} \), we have that if \(A \in S_p(\mathcal{F}) \), then \(B + A^c \notin S_p(\mathcal{F}) \) for all \(B \subseteq A \) with \(|B| = t - 1 \). If we impose the property, that \(W_p(A) \geq W_p(B + A^c) \) for any \(A \in S_p(\mathcal{F}) \) and any \((t - 1) \)-subset \(B \) of \(A \), on \(\mathcal{F} \), we then obtain a greedy \(\mathcal{P}_t \)-intersecting family in \(\mathcal{M}(s_1, s_2, \ldots, s_n) \).

Greedy \(\mathcal{P}_t \)-intersecting families form a special collection of \(t \)-intersecting families. In many cases, maximum greedy \(\mathcal{P}_t \)-intersecting families may reduce to maximum \(t \)-intersecting families. Our discussions for greedy \(\mathcal{P}_t \)-intersecting families may be a key to obtain sharp upper bounds of \(|\mathcal{F}| \) for \(t \)-intersecting families \(\mathcal{F} \) of finite sequences, which is still a hard problem.

From Definitions 1 and 2, we can see that when \(t = 1 \), maximum \(t \)-intersecting families of finite sequences are equivalent to maximum greedy \(t \)-intersecting families of finite sequences.

In this paper, we discuss the greedy \(\mathcal{P}_t \)-intersecting families in \(\mathcal{M}(s_1, s_2, \ldots, s_n) \). The discussions include three parts: \(\mathcal{P}_t \)-regular subsets, a \((t+1)\)-intersecting family of \(\mathcal{P}_t \)-greedy subsets, and the main theorems and their proofs. In our discussion, we always assume \(2p \leq s_i \) for all \(t \) and \(s_1 > s_2 > \cdots > s_n \).

2. \(\mathcal{P}_t \)-Regular Subsets

In this section, we discuss \(\mathcal{P}_t \)-regular subsets of \(\mathcal{X} \), which are useful for us to obtain greedy \(\mathcal{P}_t \)-intersecting families of finite sequences. The collection of all \(\mathcal{P}_t \)-regular subsets is partitioned into a collection of pairs of \(\mathcal{P}_t \)-regular subsets. With this partition, we can construct a \((t+1)\)-intersecting family of \(\mathcal{P}_t \)-greedy subsets.