CHEMICAL EFFECT OF 13N FORMED IN BUTYRIC-d_7 ACID IRRADIATED IN A PILE

Y. SENSUI,* K. TOMURA**

*Faculty of General Education, Rikkyo University, Nishi-Ikebukuro 3, Tokyo 171 (Japan)
**Institute for Atomic Energy, Rikkyo University, Yokosuka 240-01 (Japan)

(Received November 20, 1989)

A distinct phase effect was observed on the formation of 13NH$_3$, H13NO$_x$ and [13N]-amide in pile-irradiated butyric-d_7 acid, although the magnitude of the effect was rather smaller than that in deuterated trifluoroacetic, acetic and propionic acids previously reported. In frozen butyric-d_7 acid, most of 13N was found in the forms such as 13NH$_3$ (54.8±0.7%), H13NO$_x$ (26.8±0.6%), and [13N]-amide (15.9±1.8%). The yields of HC13N and [13N]amino-butyric acid were only 0.6±0.3 and 1.2±0.3% even in the liquid, respectively. The scavenger effect of acetic anhydride-d_6 on the formation of 13NH$_3$, H13NO$_x$ and [13N]-amide was examined. In liquid and frozen carboxylic acids, the yields of 13NH$_3$ and H13NO$_x$ were proportional and inversely proportional to the number of hydrogen atoms in a target molecule in the region of the number of hydrogen from unity to eight.

Introduction

There have been many successful works on the chemical effect of 13N atoms generated mainly by reactions such as 12C(d, n)13N, 13C(p, n)13N, 14N(n, 2n)13N and 16O(p, α)13N in various organic compounds. Several studies have been reported on the reaction of 13N and 16N with water such as reactor coolant, pointing out the importance of the chemical effect on the formation of NH$_3$ and NO$_x$. The authors have found a remarkable phase effect, in connection with radical reactions, on the formation of 13N-compounds in pile-irradiated hydrocarbons and carboxylic acid, together with a parallel relation between the formation of 13NH$_3$ and the viscosity of the substrates in acetone and ethyl ether. On the other hand, KLIMENT and SENSUI have found neither a phase nor a temperature effect on 13N-compounds formed in nitrobenzene and methanol, respectively.

Recently, the authors have revealed a correlation between the yields of 13NH$_3$ and H13NO$_x$ and the number of hydrogen atoms in a target molecule in pile-irradiated trifluoroacetic acid-d, acetic acid-d_4 and propionic acid-d_6 within the number of hydrogen in a molecule from 1 to 6.
Y. SENSUI, K. TOMURA: CHEMICAL EFFECT OF 13N FORMED IN BUTYRIC-d$_7$

In this paper, temperature effect on the formation of 13NH$_3$, H13NO$_x$ and [13N]butyramide was studied in pile-irradiated butyric-d$_7$ acid, together with the scavenging effect of acetic anhydride-d$_6$ on the formation of the 13N-compounds, and the correlation between the yields of 13NH$_3$ and H13NO$_x$ and the number of hydrogen in a target molecule was verified in the range of the number of hydrogen from 1 to 8.

Experimental

Deuterated reagents: butyric-d$_7$ acid (C$_3$D$_7$COOH, MD-171) and acetic anhydride-d$_6$ (MD-43) are supplied by the Division of Merck Frosst, Canada, Inc. Acetic anhydride-d$_6$ was refined by distillation in a nitrogen gas atmosphere prior to pile irradiation.

Pile irradiation and chemical separation were done in a similar way to previous works. Counting was carried out by pure germanium detector (well-type) supplied by EG&G Ortec Co. which has a counting efficiency 13.1±0.5% at 511 keV for the geometry in the present experiments.

Results and discussion

Phase and scavenger effects on the yield of 13N-compounds

The yield of 13NH$_3$ in butyric-d$_7$ acid was larger than that in the other deuterated carboxylic acids such as trifluoroacetic, acetic and propionic acids in all temperature range examined. A distinct increase in the yield of 13NH$_3$ was observed also when the phase of butyric-d$_7$ acid changed from solid to liquid as is shown in Fig. 1a. The magnitude of increase in the yield of 13NH$_3$ with the phase change was 6.1±1.6% in the medium, being smaller than 7.9±3.5% in trifluoroacetic acid-d, 13.9±3.9% in acetic acid-d$_4$ and 8.2±3.1% in propionic acid-d$_6$ previously reported.

With the phase change of the medium, only a little decrease, -(2±2)%, was observed in the yield of H13NO$_x$ as shown in Fig. 1b. The magnitude of the decrease in the yield of H13NO$_x$ is too small to compensate that of the increase in 13NH$_3$ in Fig. 1a. This is at variance with the fact that the magnitude of decrease in H13NO$_x$ is well balanced with that of the increase in 13NH$_3$ in the previous carboxylic acids.

On the contrary, [13N]butyramide showed a steep decrease amounting to -(4.1±2.1)% in the yield with the phase change of the medium. That differs from the results on [13N]acetamide in acetic acid-d$_4$ and [13N]propionamide in propionic acid-d$_6$ which showed just a bit of increase in their yields with the phase change of the media. The sum of the decrease in the yields of H13NO$_x$ (Fig. 1b) and [13N]butyramide (Fig. 1c) was balanced with the increase in the yield of 13NH$_3$ (Fig. 1a).