Relativistic Optics of Nondispersive Media

R. Miron\(^1\) and G. Zet\(^2\)

Received July 28, 1992; revised June 20, 1995

The relativistic optics of the nondispersive media endowed with the metric \(g_\alpha(x)\) [Eq. (1.6)] and with a nonlinear connection [Eq. (1.2)] is studied. The \(d\)-connection [Eqs. (3.3)–(3.4)] relates the conformal and projective properties of the space-time. A post-Newtonian estimation for the metric \(g_\alpha(x)\) is also given. It is shown that the solar system tests impose a constraint [Eq. (4.20)] on a combination of the post-Newtonian parameters describing the model.

1. INTRODUCTION

In a previous paper,\(^{(1)}\) Miron and Tavakol have studied a new possibility to realize the EPS axiomatics (Ehlers, Pirani, and Schild)\(^{(5)}\) of general relativity using models more general than the classical ones. The model given by these authors is based on a generalized Lagrange space \(GL^n\) endowed with the conformal metric (axiom \(a_1\)):

\[
g_\gamma(x, y) = e^{2\sigma(x, y)} g_\gamma(x) \tag{1}\]

where \(\sigma(x, y)\) is a function defined over the tangent bundle TM of a \(C^\infty\)-dimensional real manifold \(M\), and \(g_\gamma(x)\) is a pseudo-Riemannian metric on the manifold \(M\). The generalized Lagrange space \(GL^n\) is endowed with a nonlinear connection (axiom \(a_2\))\(^{(1,9,10)}\):

\[
N^i_j(x, y) = \left\{ \begin{array}{l}
i \\
jk \\
\end{array} \right\} y^k \tag{2}\]

\(^1\) Department of Mathematics, University of Iasi, Iasi, Romania.
\(^2\) Department of Physics, Polytechnic Institute of Iasi, Iasi, Romania.
where \(\{ j_k \} \) are the Christoffel symbols of the metric \(\gamma^j_y(x) \). If the function \(\sigma(x, y) \) is chosen in a suitable way, then the metric (1) implies new properties of the EPS axiomatics. Indeed, considering \(\sigma(x, y) \) of the form

\[
\sigma(x, y) = \frac{\alpha}{2} \left(1 - \frac{1}{n^2(x, y)} \right)
\]

(3)

where \(\alpha \) is a positive constant and \(n = n(x, V(x)) \) is the index of refraction defined on the dispersive medium \(M = (M, V(x), n(x, V(x))) \), then (1) becomes a metric that is suitable for the study of physical properties of the mentioned dispersive medium \(M \). We can describe the relativistic optics as a geometrical study of the pair \(\{ g_y(x, V(x)), N^j(x, V(x)) \} \), where

\[
g_y(x, V(x)) = e^{2\sigma(x, V(x))} \gamma^j_y(x)
\]

(4)

\(N^j \) is given by (2) and \(\sigma \) has the form (3) with \(y^k = V^k(x) \). Then, the geometrical model of the relativistic optics appears as a generalized Lagrange space \(GL^n(TM, g_y(x, y)) \) endowed with the nonlinear connection \(N^j \) and this theory must be restricted to the section \(S_\nu: M \rightarrow TM \) of the natural projection \(\pi: TM \rightarrow M \), locally given by

\[
S_\nu: \begin{cases}
x^i = x^i \\
y^i = V^i(x), \quad \forall x \in M
\end{cases}
\]

(5)

A special case is that in which the medium \(M \) is nondispersive, i.e., the index of refraction does not depend on the velocity \(V(x) \).

In this paper we will study the relativistic optics of the nondispersive medium \(M \) endowed with the metric

\[
g_y(x, V(x)) = e^{2\sigma(x, V(x))} \gamma^j_y(x), \quad \sigma(x, y) = \frac{\alpha}{2} \left(1 - \frac{1}{n^2(x, y)} \right)
\]

(6)

and with the nonlinear connection \(N^j(x, y) = \{ j_k \} y^k \). We will interpret the metric (6) as a generalized Lagrange metric of a generalized Lagrange space \(GL^n \) endowed with the nonlinear connection (2). In this way, we realize the EPS conditions by the axioms:

(a_1) The space-time has the conformal structure given by (6);

(a_2) The space-time has the projective structure given by the autoparallel curves of the nonlinear connection (2).

These structures are determined from a physical point of view by the light propagation and, respectively, by the free falling without rotation of the test particles. Consequently, the structure of this space is not strictly a