ON THE 67Ga-BINDING ACID MUCOPOLYSACCHARIDE IN MALIGNANT TUMOR

A. ANDO, I. ANDO

School of Allied Medical Professions, Kanazawa University
5-11-80, Kodatsuno, Kanazawa City, 920 (Japan)

(Received June 5, 1985)

The present study was undertaken to determine the structure of 67Ga-binding acid mucopolysaccharide in tumor tissues. It was determined from measuring neutral saccharide in the structure that the principal 67Ga-binding acid mucopolysaccharide in the tumor was keratan sulfate and/or keratan polysulfate. On the other hand, it was clarified from the results of mucopolysaccharase treatment that the main 67Ga-binding acid mucopolysaccharide in tumor was not keratan sulfate, heparan sulfate, heparin, nor chondroitin sulfate A, B, or C. Based on the present results, it was deduced that the main 67Ga-binding acid mucopolysaccharide in tumor is keratan polysulfate and that this acid mucopolysaccharide plays the most important role in tumor accumulation of 67Ga.

Introduction

Since tumor localization of 67Ga-citrate has been reported by EDWARDS and HAYES, 1 67Ga-binding substances in tumors and other soft tissues have been earnestly investigated. Ferritin, transferrin, glycoprotein of molecular weight 45000, and lactoferrin were reported as substances that bind 67Ga in the tissues. On the other hand, ANDO 2 originally determined that 67Ga, 111In, and 169Yb were bound to the acid mucopolysaccharides in two species of tumor tissues (Ehrlich tumor and Yoshida sarcoma). It was reported by ANDO et al. $^{3-5}$ that a 67Ga-binding acid mucopolysaccharides had been separated by cellulose acetate electrophoresis from tumor tissue and liver lysosome, and that 67Ga-binding acid mucopolysaccharides in tumor and liver were very similar. It was also reported by us 6,7 that 111In, 169Yb and 167Tm were bound to the same acid mucopolysaccharide to which 67Ga was bound. Later, these results of ours were supported by the in vitro study of KOJIMA et al., 8 and by reports that heparan sulfate (a kind of acid mucopolysaccharide) might be an acceptor for 67Ga accumulation by SASAKI et al., 9 KOJIMA et al. 10 and HAMA et al. 11 Recently we 12 determined that 67Ga was also bound to acid mucopolysaccharide in abscess, kidney, heart, lung and spleen. Concerning the structure of 67Ga-binding acid mucopolysaccharides, we 3,5,12 deduced...
that 67Ga was bound to acid mucopolysaccharide (e.g. keratan sulfate) which con-
tained no uronic acid. Furthermore, we1,3 reported that this acid mucopolysaccharide
is keratan polysulfate. The present paper describes the details of 67Ga-binding acid
mucopolysaccharide in tumor.

Materials and methods

Materials

Male ddY mice (28–36 g) subcutaneously implanted with Ehrlich tumor.

Carrier-free 67Ga-citrate (100–200 μCi/cm3) was prepared from 67Ga-citrate
(Daiichi Radioisotope Laboratories Ltd., Japan) and 0.08M sodium citrate solution.
Carrier-free sodium sulfate3,5S solution, pH 6.0–8.0 (1 cm3 containing 900 μCi), was
prepared from H_2SO_4–3,5S in 0.05M HC1 solution (Japan Atomic Energy Research
Institute, Japan) and 0.1N NaOH solution to the osmotic pressure at which this solution
can be injected intraperitoneally into the animals.

Pronase E (Protease from streptomyces griseus, Kaken Chemical Co., Japan).

The following 10 biochemical materials were purchased from Seikagaku Kogyo Co.
Ltd., Japan: Chondroitinase ABC (from Proteus Vulgaris), Heparitinase (from Flavo-
bacterium heparium), Keratanase (from Pseudomonas), Heparinase (from Flavobacterium
heparium), Chondroitin sulfate A, Na-salt (from whale cartilage), Chondroitin sulfate B,
Na-salt (from pig skin), Chondroitin sulfate C, Na-salt (from shark cartilage), Haparan
sulfate, Na-salt (from bovine kidney), Heparin, Na-salt (from pig intestine), Keratan sulfat
Na-salt (from bovine cornea).

Sephadex G-50 (particle size 50-150 μm), G-100 (particle size 40–120 μm,
Pharmacia Fine Chemical AB, Sweden).

Dowex 1–X2 (Cl type, anion-exchange resin, The Dow Chemical Co., USA).

Incubation time with pronase E

The above mice were injected intraperitoneally with 67Ga-citrate (0.4 cm3) and
killed 24 hours later. Tumor was excised and rinsed in 0.9% NaCl solution. All manipula-
tions described below were conducted at 4 $^\circ$C. The tumor was homogenized with 10
volumes of 0.15M KCl containing 0.01M Tris buffer, pH 7.6 in a Potter-Elvehjem
type homogenizer. The homogenates were centrifuged for 15 min at 400 g and the
sediments (cell debris and nuclear fraction) were discarded. The homogenate, from
which the nuclear fraction had been removed, was adjusted to pH 7.8–8.2 with 0.1M
NaOH and divided into 7 cm3 aliquots. The homogenates (7 cm3 each) were then
incubated with 60 mg of pronase E at 37 $^\circ$C.

After digestion of 12 hours, one of the reaction mixtures was centrifuged at
3000 rpm (1500 g) for 20 min, and the sediments were discarded. Five cm3 of