THERMAL DECOMPOSITION OF ALKYLCYCLOHEXANE MIXTURES

A.I. Chashchin and N.A. Svarovskaya
Polytechnical Institute, Tomsk 634004, USSR

Received July 23, 1984
Accepted November 8, 1984

Thermal decomposition of model alkylcyclohexane mixtures with different ratios of components has been investigated. The possibility to estimate the yield of reaction products by calculating the relative activities of a group of hydrocarbons is shown.

Thermal decomposition of model alkylcyclohexane mixtures with different ratios of components has been investigated. The possibility to estimate the yield of reaction products by calculating the relative activities of a group of hydrocarbons is shown.

In petroleum refining and petrochemistry fractions with different group and fractional compositions are utilized. Regularities in the thermal decomposition of individual hydrocarbons, including stock naphthenes, have been studied previously by several authors [1,2]. Relative activity of hydrocarbons in the cyclohexane series can be determined according to Ref. [1]. Let their activity be characterized by the conversion and let the cyclohexane activity be equal to unity. Then the relative activity of its homologs can be estimated as the ratio of their conversion relative to that of cyclohexane (Table 1).

Relative activity of hydrocarbon mixtures can be determined as

$$A_{mix} = \frac{\sum_{i=1}^{n} q_i a_i}{a_0}$$ \hspace{1cm} (1)

In petroleum refining and petrochemistry fractions with different group and fractional compositions are utilized. Regularities in the thermal decomposition of individual hydrocarbons, including stock naphthenes, have been studied previously by several authors [1,2]. Relative activity of hydrocarbons in the cyclohexane series can be determined according to Ref. [1]. Let their activity be characterized by the conversion and let the cyclohexane activity be equal to unity. Then the relative activity of its homologs can be estimated as the ratio of their conversion relative to that of cyclohexane (Table 1).

Relative activity of hydrocarbon mixtures can be determined as

$$A_{mix} = \frac{\sum_{i=1}^{n} q_i a_i}{a_0}$$ \hspace{1cm} (1)
where g_i is the molar content of the i-th component in the mixture and a_i is its relative activity.

The aim of the present study was to establish the dependence between the yield of the main products of thermal decomposition of naphthene mixtures and the A value.

The available literature data concerning the dependence of the yield of cracking products (mainly H_2, CH_4, C_2H_4) on the average molecular mass of stock material are conflicting [3,4]. It is likely that such a correlation is rather rough and does not account for the structure of initial components. For example, the yields of propylene, divinyl and higher molecular dienes in petroleum cracking are considerably dependent on the hydrocarbon structure, which was confirmed by the experimental data [2].

Since the qualitative composition of fractions is often the same [5], it is of interest to carry out experiments with the thermal decomposition of a group of hydrocarbons with different ratios of components within the group.

We have examined thermal decomposition in alkylcyclohexane mixtures prepared from the main components of this homologous series, entering into the gasoline fraction (Table 1).

Table 1
Initial composition of alkylcyclohexane mixtures (mol%)

<table>
<thead>
<tr>
<th>No.</th>
<th>Components</th>
<th>Mixture 1</th>
<th>Mixture 2</th>
<th>Relative activity of hydrocarbons estimated according to Ref.[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cyclohexane</td>
<td>13.86</td>
<td>6.48</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Methylcyclohexane</td>
<td>28.14</td>
<td>12.04</td>
<td>1.34</td>
</tr>
<tr>
<td>3</td>
<td>Dimethylcyclohexanes</td>
<td>25.05</td>
<td>15.23</td>
<td>1.44</td>
</tr>
<tr>
<td>4</td>
<td>trimethyl + methyl + ethylcyclohexanes</td>
<td>18.07</td>
<td>50.31</td>
<td>1.55</td>
</tr>
<tr>
<td>5</td>
<td>Methyl + isopropyl-cyclohexanes</td>
<td>14.88</td>
<td>19.93</td>
<td>1.65</td>
</tr>
</tbody>
</table>