COMPARISON OF CHEMISORPTION AND HYDROGENOLYSIS OF ETHANE ON TRANSITION METALS

A. Sárkány and P. Tétényi

Institute of Isotopes of the Hungarian Academy of Sciences,
H-1525 Budapest, P.O.Box 77, Hungary

Received March 28, 1978
Accepted May 15, 1978

Data on chemisorption of ethane on transition metal blacks have been correlated with hydrogenolysis activity measurements. On Pt and Pd the rupture of the C-C bond seems to be a hindered process. Desorption of methane requires larger activation on Co and Ni than on Ru, Rh or Ir blacks.

INTRODUCTION

Theoretical considerations /1/ have shown that the catalytic activity as a function of the strength of the catalyst-substrate interaction must pass through a maximum, i.e., from the viewpoint of catalytic activity both weak and strong interaction is disadvantageous. The hydrogenolysis activity of transition metals /2, 3/ passes through a maximum from left to right of the periodic table. In all reported cases, however, the catalytic activity and a "bulk" parameter of the catalyst were correlated. In our recent paper we intended to compare the chemisorption of ethane with catalytic activity measurements.
Catalytic activity measurements were described elsewhere /4/. The average H/C ratio in chemisorbed ethane was determined in a static system connected to an AEI MS 10 C 2 mass spectrometer introducing $2.4 \times 10^{19} - 7.2 \times 10^{19}$ molecules over the bare metal surface (3-6 m²). Desorption experiments /5/ were performed in a dynamic flow system: the flow rate of H_2 was 20 ml min⁻¹ and the heating rate 5 K min⁻¹. The preparation of metal blacks is given in earlier papers /4, 5/.

RESULTS AND DISCUSSION

The hydrogenolysis activity was characterized by the rate of ethane consumption at 523 K as well as by the threshold temperature (T_{th}), which is inversely proportional to the hydrogenolysis activity. The latter value was calculated for a reaction rate of 0.5% m⁻² h⁻¹. The activity pattern shown in the first two rows of Table 1 is in good correlation with Sinfelt's data /2/ measured on silica supported metals.

The average H/C composition of chemisorbed ethane was measured at 428 and 483 K on Co, Ni, Rh, Pd and Pt blacks. Results are shown in the 3rd and 4th rows, respectively. Ethane suffers "deep" dissociation on Co and Ni blacks, a much lower degree of C-H bond rupture on Pt, while Rh occupies a medium position.

The 5th row in Table 1 contains the temperatures at which the hydro-desorbed substrate contains 10 mol% methane, $T_{CH_4}^{10 \text{ mol%}}$. Chemisorption and hydro-desorption was performed under isothermal conditions. This temperature is the lowest for Ni, Co, Ir and Rh catalysts.

The position of the maximum rate of methane formation ($T_{CH_4}^{max}$) determined from TPD curves is summarized in the 6th row. The surface was saturated with ethane at 418-423 K for Co, Ni, Rh, Ru and Ir blacks, whereas at 473 K for Pt and Pd. Before switching on the TP the sample was cooled rapidly to room tem-