Variations in resistivity R and work function ϕ of thin Tm and Dy films due to H_2 adsorption on their surface at 77 K have been studied. It is suggested that on most surfaces hydrogen is strongly adsorbed as $H^-\delta$, and only below 10% monolayer is its weakly adsorbed form H^+_2. The observed decrease of ϕ is attributed to $H^-\delta$ penetrating into lattice vacancies and surface cavities.

Despite the ever increasing number of studies dealing with the character of metal-hydrogen interactions, this problem does not lose its urgency, particularly in relation to rare-earth metals (REM), which are relatively poorly examined but are of great scientific and technical interest. To solve this problem, it is recommended to apply such relatively simple and well-known methods as variations in resistivity R and work function ϕ.

Akadémiai Kiadó, Budapest
function \(f \) taking place in \(H_2 \) adsorption on films deposited in ultrahigh vacuum. These methods have been extensively used to study \(H_2 \) adsorption on films of transition metals [1-3, etc.]. But the literature data for REM are limited in number [4, 5, 6]. The author of [4] reports data for \(H_2 \) adsorption on Sc films at 77 and 293 K. Resistivity at 77 K rises and then it is saturated, which, according to the author's view, indicates the presence of two hydrogen forms: strongly bound atomic \(H^- \) and weakly bound molecular \(H_2^+ \). The complex character of \(R \) curve at 293 K indicates the possibility of \(H_2 \) dissolution in Sc. The authors of Ref. [5] used a diode method of recording the initial regions of voltage-current curves to study \(\Delta f \) in \(H_2 \) adsorption on Yb and Gd at 313 K and on Gd at 77 K.

We now present the results of application of the above methods to study \(H_2 \) chemisorption on Dy and Tm films at 77 K.

EXPERIMENTAL

Experiments were carried out in a glass ultravacuum installation [7], with a stable \(10^{-7} \) Pa vacuum in the operational volume. The design of the reactor where our films were deposited (Fig. 1) permitted to study variations in both \(R \) and \(f \) using the diode method as well as the kinetics of model reactions of isotope exchange and ortho-para conversion in \(H_2 \). The reactor was a glass vessel (d=30 mm) with the upper part made as a Dewar flask with two pairs of Mo wires soldered into its bottom. Two tungsten spirals (d=0.3 mm) were spot-welded (1, 2) to the Mo inputs. 10-20 mg metal samples were placed into spiral (1) and evaporated. Metal film was condensed on the internal surface of the reactor and covered Pt wires (d=0.2 mm) (3) half-pressed into glass and welded to the Mo wires (4) connected with a standard R-4833 bridge to measure the film \(R \). Spiral (2) was used as a cathode emitter of electrons to measure \(f \) and its variations in \(H_2 \) adsorption using the diode method. In this case the film was the anode and connected with the diode circuit using Pt wires (3).