On the Spectra of Schrödinger Operators

Jingbo Xia

Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14214, USA

Received: 12 March 1993

Abstract: We give two formulas for the lowest point \mathcal{J} in the spectrum of the Schrödinger operator $L = -(d/dt)p(d/dt) + q$, where the coefficients p and q are real-valued, bounded, uniformly continuous functions on the real line. We determine whether or not \mathcal{J} is an eigenvalue for L in terms of a set of probability measures on the maximal ideal space of the C^*-algebra generated by the translations of p and q.

Introduction

In this paper, we will study the Schrödinger operator

$$L = -\left(\frac{d}{dt}\right)p\left(\frac{d}{dt}\right) + q$$

on $\mathcal{D} \subset L^2(\mathbb{R})$. As usual, the domain \mathcal{D} of this operator is the collection of functions $f \in L^2(\mathbb{R})$ which have the property that f and f' are absolutely continuous functions on every finite interval and f', $f'' \in L^2(\mathbb{R})$. We assume that p and q are real-valued, bounded, uniformly continuous functions on \mathbb{R}. In addition, we assume that p' is also a bounded, uniformly continuous function on \mathbb{R} and that there is a $c > 0$ such that $p(t) \geq c$ for every $t \in \mathbb{R}$. It is well known that, under these assumptions, L is a self-adjoint operator on \mathcal{D}. The main goal of this paper is to study the lowest point $\mathcal{J} = \inf \{\lambda : \lambda \in \sigma(L)\}$ of the spectrum of L. There have been estimates of the value \mathcal{J} in the literature when the coefficients p and q of the operator have recurrence properties [4]. We will give two formulas for the value \mathcal{J}. These formulas are related to a C^*-algebra associated with the functions p and q.

Before we state our results, some definitions are necessary. For a function f defined on \mathbb{R}, by a translation of f we mean a function f_s given by the formula $f_s(t) = f(t+s)$. We denote by \mathcal{A} the C^*-algebra generated by all the translations of p, p', q and all

Research supported in part by the National Science Foundation under Grant DMS-9101496
the constant functions on \(\mathbb{R} \). Let \(\mathcal{A}^1 = \{ f \in \mathcal{A} : f' \in \mathcal{A} \} \). For each state \(\varphi \) on \(\mathcal{A} \), let \(H_\varphi \) be the Hilbert space completion of \(\mathcal{A} \) with respect to the inner product \(\langle f, g \rangle_\varphi = \varphi(fg) \). Let \(\mathcal{M} \) be the collection of states \(\varphi \) on the \(C^* \)-algebra \(\mathcal{A} \) such that
\[
|\varphi(f')| \leq C_\varphi \sqrt{\varphi(f^2)} \]
for every \(f \in \mathcal{A}^1 \), where \(C_\varphi \) is a constant depending only on \(\varphi \). Equivalently, \(\mathcal{M} \) is the collection of states \(\varphi \) for which there is a unique \(h_\varphi \in H_\varphi \) such that
\[
\varphi(f') = \langle f, h_\varphi \rangle_\varphi \]
for every \(f \in \mathcal{A}^1 \). Let
\[
\mathcal{F}_0 = \{ pw^2 + (pw)' : w \text{ is any real-valued function in } \mathcal{A}^1 \},
\]
and let \(\mathcal{F} \) be the closure of the convex hull of \(\mathcal{F}_0 \) in the norm topology. Let
\[
d_0(\varphi) = \inf\{ ||\varphi - u||_\infty : u \in \mathcal{F}_0 \} \quad \text{and} \quad d(\varphi) = \inf\{ ||\varphi - u||_\infty : u \in \mathcal{F} \}.
\]

Theorem 1.

(a) \(d_0(f) = d(f) \) for every \(f \in \mathcal{A} \).
(b) \(\mathcal{F} = ||q||_\infty - d(q) - ||q||_\infty \).
(c) If \(\mathcal{F} \leq 0 \), then \(I = -d(q) \).
(d) \(\mathcal{F} = \min\{ \varphi(q) + \frac{1}{4} \langle ph_\varphi, h_\varphi \rangle_\varphi : \varphi \in \mathcal{M} \} \).
(e) If \(d(q) > 0 \), then \(-\mathcal{F} = d(q) = \max\{ -\varphi(q) - \frac{1}{4} \langle ph_\varphi, h_\varphi \rangle_\varphi : \varphi \in \mathcal{M} \} \).

We particularly emphasize the fact that in (d) and (e) above, the extrema are attainable. We will explain in Sect. 3 that the fact that they are attainable makes \(\mathcal{F} \) a “quasi-eigenvalue” for \(L \). In other words, we assert that when the coefficients \(p \) and \(q \) satisfy our assumptions, the lowest point in the spectrum of \(L = -(d/dt)p(d/dt) + q \) is always a quasi-eigenvalue. In fact quasi-eigenvalue is the most that one can say about \(\mathcal{F} \) in general. Although \(\mathcal{F} \) can be a genuine eigenvalue, in the case \(p \) and \(q \) are almost periodic functions, it is known that \(\mathcal{F} \) is not an eigenvalue in probability 1.

It is obvious that for each \(s \in \mathbb{R} \), the map \(\varphi_s : f \mapsto f_s \) is an automorphism of the \(C^* \)-algebra \(\mathcal{A} \). The fact that the functions in \(\mathcal{A} \) are uniformly continuous on \(\mathbb{R} \) implies that the group of automorphisms \(\{ \varphi_s : s \in \mathbb{R} \} \) is strongly continuous in the sense that for every \(f \in \mathcal{A} \), \(s \mapsto \varphi_s(f) = f_s \) is a continuous map from \(\mathbb{R} \) into \(\mathcal{A} \). Therefore the automorphism group \(\{ \varphi_s : s \in \mathbb{R} \} \) induces a strongly continuous group of homeomorphisms \(\{ \alpha_s : s \in \mathbb{R} \} \) of the maximal ideal space \(\Omega \) of \(\mathcal{A} \). In other words, the map \((\omega, s) \mapsto \alpha_s(\omega) \) from \(\Omega \times \mathbb{R} \) to \(\Omega \) is continuous. If we identify \(\mathcal{A} \) with \(C(\Omega) \), then obviously \(\mathcal{A} \) can be regarded as the subset \(C^1(\Omega) \) of \(f \in C(\Omega) \) such that the limit \(f' = \lim_{\varepsilon \to 0} (f \circ \alpha_s - f)/\varepsilon \) exists in the norm topology of \(C(\Omega) \). Similarly, \(\mathcal{M} \) can be identified with the collection of probability measures \(\mu \) on \(\Omega \) such that
\[
\int_{\Omega} f' \, d\mu \leq C_\mu \left[\int_{\Omega} |f|^2 \, d\mu \right]^{1/2}
\]
for every \(f \in C^1(\Omega) \), where \(C_\mu > 0 \) is a constant which depends only on \(\mu \). Given a \(\mu \in \mathcal{M} \), \(D_\mu : f \mapsto f' \) is a linear operator from the dense subspace \(C^1(\Omega) \) into \(L^2(\Omega, \mu) \). It seems that the subscript of the symbol \(D_\mu \) is unnecessary, for the operator itself is actually independent of the measure \(\mu \). The reason we write \(D_\mu \) is that its adjoint \(D_\mu^* \) does in general depend on the measure \(\mu \). If we let \(\hat{p} \) and \(\hat{q} \) denote the Gelfand transforms of \(p \) and \(q \) respectively, then it follows from Theorem 1 that the set
\[
\mathcal{M}(p, q) = \left\{ \mu \in \mathcal{M} : \mathcal{F} = \langle \hat{q}, 1 \rangle_\mu + \frac{1}{4} \langle \hat{p}D_\mu^* 1, D_\mu^* 1 \rangle_\mu \right\}
\]