ON DIFFERENTIABILITY OF SOLUTIONS TO HOMOGENEOUS ELLIPTIC EQUATIONS OF DIVERGENCE TYPE

N. A. Kudryavtseva

UDC 517.518.153:517.956.25

Introduction. In the article we consider the functions of class $W^{1}_{2,\text{loc}}(U)$ (where U is a domain in \mathbb{R}^{n}) which are generalized solutions to the elliptic equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(\sum_{j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_{j}} \right) = 0. \tag{1}$$

As regards the coefficients $a_{ij}(x)$, we assume that they are measurable and, for almost all $x \in U$ and all $\xi \in \mathbb{R}^{n}$, satisfy the inequalities

$$\lambda_{1} |\xi|^{2} \leq \sum_{i,j=1}^{n} a_{ij}(x) \xi_{i} \xi_{j} \leq \lambda_{2} |\xi|^{2}, \tag{2}$$

where $0 < \lambda_{1} \leq \lambda_{2} < \infty$.

Assigning

$$\Delta(x) = \sum_{i,j=1}^{n} |a_{ij}(x) - a_{ij}(x_{0})|,$$

we assume

$$\sup_{|x-x_{0}| \leq r} \Delta(x) = \omega(r), \tag{3}$$

where $\omega(r) \to 0$ as $r \to 0$. Further, we suppose that there exist $k > 0$ and $\alpha > 0$ such that

$$\int_{0}^{k} \frac{\omega(t)}{t^{1+\alpha}} dt < \infty. \tag{4}$$

In the article we prove the following theorems:

Theorem 1. Under the above-made assumptions, the function $u(x)$ is differentiable at the point x_{0} in the sense of W^{1}_{2}.

Corollary 1. The function $u(x)$ is differentiable at x_{0} in the conventional sense.

Theorem 2. Suppose that $|u'(x)| \leq M$ and $\Delta(x) \leq M$ almost everywhere in U and there exists an $\alpha > 0$ such that

$$\int_{U} \frac{\Delta(x)}{|x-x_{0}|^{n-\alpha}} dx < \infty.$$

Then the function $u(x)$ is differentiable at x_{0}.

Corollary 2. Suppose that \(f \) is a quasi-isometric mapping and there exists an \(\alpha > 0 \) such that
\[
\int_U \frac{L_f(x) - 1}{|x - x_0|^{n+\alpha}} \, dx < \infty,
\]
where \(L_f(x) \) is the quasi-isometry coefficient of \(f \) at \(x \). Then \(f \) is differentiable at \(x_0 \).

1. Preliminaries. We let \(U \) be a domain in \(\mathbb{R}^n \), let \(B(r) \) denote the ball with center the origin and radius \(r \), and let \(S(r) \) denote the boundary sphere of \(B(r) \). Given a function \(f : U \to \mathbb{R} \), we assign
\[
\nabla f(x) = f'(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \ldots, \frac{\partial f}{\partial x_n}(x) \right),
\]
\[
\|f\|_{L^2(U)} = \left(\int_U |f(x)|^2 \, dx \right)^{1/2}, \quad \|f\|_{W^2_2(U)} = \|f\|_{L^2(U)} + \|f'\|_{L^2(U)}.
\]

We say that a function \(f : U \to \mathbb{R} \) is differentiable in the sense of convergence in \(W^2_2 \) at a point \(a \in U \) if there exists a linear mapping \(L : \mathbb{R}^n \to \mathbb{R} \) such that, for all sufficiently small \(h, 0 < h \leq h_0 \), the function \(r_h : x \in B(1) \mapsto (1/h)[f(a + hx) - f(a) - hL(x)] \) is defined on the ball \(B(1) \), and belongs to the space \(W^2_2 \), and \(\|r_h\|_{W^2_2(B(1))} \to 0 \) as \(h \to 0 \). The linear mapping \(L \) is called the \(W^2_2 \)-differential of \(f \) at \(a \). The function is differentiable in the conventional sense in case \(\|r_h\|_{C[\overline{B(1)}]} \to 0 \) as \(h \to 0 \).

A function \(u : U \to \mathbb{R} \) is said to be a generalized solution to equation (1) if the equality
\[
\int_U \sum_{i,j=1}^n a_{ij}(x) \frac{\partial u}{\partial x_j} \frac{\partial \varphi}{\partial x_i} \, dx = 0
\]
holds for every function \(\varphi \) of class \(W^2_2 \) with compact support in \(U \).

As is known (see, for instance, [1]), a generalized solution to equation (1) exists, is continuous, and satisfies the Hölder condition in each strictly interior subdomain; in particular, if \(u(x) \) is a generalized solution to equation (1) in \(B(R) \) and \(u(0) = 0 \), then there exists a \(\gamma > 0 \) such that \(|u(x)| \leq cr^\gamma \) for \(|x| = r < R \).

The following theorem ensues from [2].

Theorem 3. Suppose that \(u(x) \) is a solution to equation (1) and that \(u(x) \) is differentiable at \(x_0 \) in the sense of \(W^2_2 \). Then \(u(x) \) is differentiable at \(x_0 \) in the conventional sense.

We shall need the following result of [3]:

Theorem 4. Suppose that \(a_{ij}(x) = \delta_{ij} + \epsilon_{ij}(x) \), where \(\epsilon_{ij}(x) = \epsilon_{ji}(x) \) are measurable functions such that
\[
\left| \sum_{i,j=1}^n \epsilon_{ij}(x) \xi_i \xi_j \right| \leq \epsilon |\xi|^2, \quad \epsilon < 1,
\]
for almost all \(x \in U \) and all \(\xi \in \mathbb{R}^n \). Then there exists a \(k = k(n) > 0 \) such that each solution \(u \) to equation (1) belongs to \(W^1_{p,\text{loc}}(U) \) for every \(p \in (1, 2 + k \log(1/\epsilon)) \).

The proof of the assertion relates to the reverse Hölder inequality. It is shown in [4] that the estimate \(p < c/\epsilon \) for the integrability exponent \(p \) is obtainable for \(\epsilon \) sufficiently small.

We now present some estimates for harmonic functions. For every harmonic function \(h(x) \) in the ball \(B(x_0, r) \), the following inequality holds:
\[
|\nabla h(x_0)| \leq cr^{-n/2} \left(\int_{B(x_0, r)} |\nabla h(y)|^2 \, dy \right)^{1/2}.
\]

(5)