On Incomplete Gaussian Sums

Liu Chunlei

Abstract. In this paper it is proved that
\[\sum_{n=N+1}^{N+H} \chi(n) \psi(n) \ll H^{1-\frac{1}{r}} q^{\frac{1}{4}(r-1)+\varepsilon}, \]
where \(r = 4 \), \(q \) is a prime power, \(\chi \) and \(\psi \) are multiplicative and additive characters modulo \(q \) respectively, with \(\chi \) nontrivial.

Keywords. Multiplicative characters

1 Introduction

Let \(\chi \) and \(\psi \) be multiplicative and additive characters modulo \(q \) respectively. Let \(r \) be an integer greater than 2. Let \(\chi \) be nontrivial.

In this paper we prove

Theorem 1. If \(r = 4 \) and \(q \) is a prime power, then
\[\sum_{n=N+1}^{N+H} \chi(n) \psi(n) \ll H^{1-\frac{1}{r}} q^{\frac{1}{4}(r-1)+\varepsilon}. \] (1)

The following results are due to Burgess\,[1,2].
A. (1) holds when \(r = 3 \);
B. (1) holds when \(r = 4 \) and \(q = p^\alpha \) is a prime power with \(\alpha \leq 7 \).

Let
\[f_1(x) = \prod_{i=1}^{r} (x + m_i), f_2(x) = \prod_{i=r+1}^{2r} (x + m_i), \quad m_1 + \cdots + m_r = m_{r+1} + \cdots + m_{2r}, \] (2)
\[D = \{(m_1, \ldots, m_{2r}) \in \mathbb{Z}^{2r} : 0 < m_i \leq h, m_i \neq m_{2r} \text{ if } i \neq 2r\}. \]

By [1], it suffices to prove

Theorem 2. If \(r = 4 \), \(q \) is a prime power, \(\chi \) is primitive and \(h \leq q^{\frac{1}{2r}} \), then
\[\sum_{\substack{m \in D}} \left| \sum_{0 \leq x < q} \chi(f_1(x)) \overline{\chi(f_2(x))} \right| \ll q^{1+\varepsilon} h^r. \] (3)
2 On Complete Character Sums

In this section we study the complete sums
\[\sum_{0 \leq x < q} \chi(P(x))\bar{\chi}(Q(x)), \]
where \(\chi \) is primitive, \(P(x) \) and \(Q(x) \in \mathbb{Z}[x] \).

Let \(| \cdot |_p \) be the normalized exponential valuation of the \(p \)-adic number field \(\mathbb{Q}_p \).

Let
\[R = P/Q, \quad q | \alpha_p, \]
A = \{0 \leq x < q : (q, P(x)Q(x)) = 1\},

\[A(p, i, \theta) = \left\{ x \in A : \left| \frac{R^{(j)}(x)}{j!} \right|_p \geq \frac{\alpha_p}{j+1} (j < i), \left| \frac{R^{(i)}(x)}{i!} \right|_p = \theta \right\}. \]

Our result concerning (4) is the following theorem.

Theorem 3. If \(\chi \) is primitive and
\[\theta_p < \frac{\alpha_p}{i_p + 1} \quad \text{when} \quad i_p < 4, \]
then
\[\sum_{\chi \in \Lambda(p,x,q)} \chi(R(x)) \ll \left(\prod_{i_p=1} p^{\alpha_p} \right)^{1/2} \left(\prod_{i_p=2} p^{\alpha_p+\theta} \right)^{1/2} \left(\prod_{i_p=3} \omega_p(\theta_p) \right) \left(\prod_{i_p=4} \min(p^{\alpha_p}, p^{[2\alpha_p]+\theta}) \right), \]

where
\[\omega_p(\theta) = \begin{cases} p^{[\frac{1}{3}\alpha_p]} & \text{if } \theta = 0, \\ p^{p^{\alpha_p-\left[\frac{3\alpha_p}{2}\right]+\theta}} + p^{\frac{1}{3}\alpha_p+\left[\frac{3\alpha_p}{2}\right]+\theta} & \text{if } 2 \left[\frac{\alpha_p - \theta + 2}{3} \right] < \left[\frac{2}{3}\alpha_p \right], \\ p^{p^{\alpha_p-\left[\frac{3\alpha_p}{2}\right]+\theta}} & \text{otherwise.} \end{cases} \]

The proof of Theorem 3 needs the following lemmas.

Lemma 1. Let \(\chi \) be of conductor \(p^\alpha \) with \(p \) prime. Suppose that \(p \nmid a_0, \frac{\alpha}{2} \leq \theta \leq \alpha - 1 \). Then
\begin{align*}
\text{(I)} & \quad \sum_{0 \leq y < p^{\alpha-\theta}} \chi(a_0 + a_1 p^\theta y) = 0 \quad \text{if } p^{\alpha-\theta} \nmid a_1 \\
\text{(II)} & \quad \sum_{0 \leq y < p^{\alpha-\theta}} \chi(a_0 + a_1 p^\theta y + a_2 p^\theta y^2) \ll p^{\frac{\alpha \theta}{2}} \quad \text{if } p \nmid (a_1, a_2).
\end{align*}

Proof. It is easy to see that \(\chi(1 + ap^\theta y) \) is an additive character of conductor \(p^{\alpha-\theta} \) with respect to \(y \) when \(p \nmid a \). So (I) follows from the orthogonality and (II) follows from the classical estimate for Gaussian sums.

Lemma 2. Let \(R(x) = P(x)/Q(x) \in Q(x) \). Suppose that \(p \nmid P(x_0)Q(x_0) \). Then
\[R(x_0 + y) = \sum_{i=0}^\infty \frac{R^{(i)}(x_0)}{i!} y^i \in \mathbb{Z}_p[[y]]. \]