Linear Structures on the Collections of Minimal Surfaces in \mathbb{R}^3 and \mathbb{R}^4

ANTHONY J. SMALL

Abstract: The collection of 'minimal herissons' in \mathbb{R}^3 is endowed with a vector space structure. The existence of this structure is related to the fact that null curves in \mathbb{C}^3 are described by a single map from the étale space of the sheaf of germs of holomorphic sections of the line bundle of degree 2 over \mathbb{P}^1 to \mathbb{C}, which is linear on stalks. There is an analogous construction for null curves in \mathbb{C}^4. This gives a similar class of minimal surfaces in \mathbb{R}^4.

Key words: Minimal surface, null holomorphic curve
MSC 1991: 53C42, 14E05

Introduction

In [6], a vector space structure is described on a certain class of minimal surfaces in \mathbb{R}^3 which the authors refer to as 'minimal herissons'. Our object in this note is to clarify the description of this structure and explain why a similar structure exists in dimension 4. We show that the existence of this structure is closely related to the fact that null curves in \mathbb{C}^3 are described by a single map from the étale space of the sheaf of germs of holomorphic sections of the line bundle of degree 2 over \mathbb{P}^1 to \mathbb{C}, which is linear on stalks. We outline an analogous construction for null curves in \mathbb{C}^4.

We use standard constructions and facts from minimal surface theory and algebraic geometry, see [1], [2], [4] and [5] for further details.

Linear Structures

Recall that a branched minimal surface in \mathbb{R}^n is described by the real part of a null holomorphic curve in \mathbb{C}^n. If $\omega, \nu : M \rightarrow \mathbb{C}^n$ are null then $\langle \omega' + \nu', \omega' + \nu' \rangle = 2\langle \omega', \nu' \rangle$ is the obstruction to the nullity of $\omega + \nu$, and hence the conformality of $\text{Re}(\omega) + \text{Re}(\nu)$.

For $n = 3$, the Gauss map γ_{ω}, of a null curve $\omega : M \rightarrow \mathbb{C}^3$, takes values on the quadric curve $Q_1 \simeq \mathbb{P}^1$, and (local) reparameterisation by Gauss maps removes the obstruction because it results in the linear dependence of the tangent (null) vectors being summed. More precisely, for $U \subset \mathbb{C}$, open, consider the pairs (ω, V), where $\omega : V \rightarrow \mathbb{C}^3$ is null and such that $\gamma_{\omega}(V) = U$ and γ_{ω}^{-1} exists on U. Let $\bar{\gamma}(\zeta) = \omega \circ \gamma_{\omega}^{-1}$ and observe that $\gamma_{\omega}(\zeta) = \zeta$. For pairs (ω, V), (ν, V') addition can be defined, over U, using: $\zeta \mapsto \bar{\gamma}(\zeta) + \bar{\nu}(\zeta)$, so that the resulting sum describes a null curve and the real part gives a minimal surface in \mathbb{R}^3. This underlies the vector space structure used in [6].
Let $\mathcal{O}(2) \rightarrow \mathbb{P}_1$ denote the holomorphic line bundle of degree 2 and let $\pi : \text{Sp}e[\mathcal{O}(2)] \rightarrow \mathbb{P}_1$ be the étale space of the sheaf of germs of local holomorphic sections. There is a canonical map $\Omega : \text{Sp}e[\mathcal{O}(2)] \rightarrow H^0(\mathbb{P}_1, \mathcal{O}(2)) \cong \mathbb{C}^3$ which is given on stalks by sending a germ to its 2-jet. (A conformal structure on $H^0(\mathbb{P}_1, \mathcal{O}(2))$ is determined by the cone of global sections that possess a double root on \mathbb{P}_1 and there is a canonical identification between \mathbb{P}_1 and the quadric curve of null lines in $H^0(\mathbb{P}_1, \mathcal{O}(2))$ given by $\zeta \rightarrow \{\text{sections with a double root at } \zeta\}$.) In [7], we proved:

Theorem. $\Omega : \text{Sp}e[\mathcal{O}(2)] \rightarrow H^0(\mathbb{P}_1, \mathcal{O}(2))$ is a null holomorphic curve which describes all non-linear null curves in \mathbb{C}^3. Its Gauss map is given by projection: $\gamma_1 = \pi$.

Note that $\text{Re}(\Omega) : \text{Sp}e[\mathcal{O}(2)] \rightarrow \mathbb{R}^3$ describes all non-planar minimal surfaces in \mathbb{R}^3.

Now recall that the stalks of $\pi : \text{Sp}e[\mathcal{O}(2)] \rightarrow \mathbb{P}_1$ are (infinite dimensional) vector spaces over \mathbb{C}. The vector space structure described above is simply a manifestation of the following:

Fact. $\Omega : \text{Sp}e[\mathcal{O}(2)] \rightarrow H^0(\mathbb{P}_1, \mathcal{O}(2))$ is linear on stalks.

This follows immediately from the fact that the 2-jet of a sum of germs at a point is simply the sum of the 2-jets of the germs.

Remark. This gives the most transparent picture of the linear structure on the collection of null curves in \mathbb{C}^3.

A similar picture emerges in dimension 4 in the following way. Recall that the quadric surface Q_2 is doubly ruled, giving $Q_2 \cong \mathbb{P}_1 \times \mathbb{P}_1$. The totally isotropic 2-dimensional subspaces of \mathbb{C}^4 form 2 families, the ‘α-planes’ and the ‘β-planes’, which are parameterised by the factors. A null line in \mathbb{C}^4 lies on the intersection of an α-plane and β-plane, which are thus uniquely determined. See [1] for further details. It follows that the Gauss map of a null curve $\omega : M \rightarrow \mathbb{C}^4$ splits: $\gamma_\omega = (\gamma_{\omega 1}, \gamma_{\omega 2})$, where $\gamma_{\omega 1}$ describes the α-planes determined by γ_ω and $\gamma_{\omega 2}$ the β-planes.

Let $\mathcal{O}(1) \rightarrow \mathbb{P}_1$ be the holomorphic line bundle of degree 1 and $\pi : \text{Sp}e[\mathcal{O}(1) \oplus \mathcal{O}(1)] \rightarrow \mathbb{P}_1$ be the étale space of the sheaf of germs of local holomorphic sections of the rank 2 bundle $\mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{P}_1$. There exists a canonical map $\omega : \text{Sp}e[\mathcal{O}(1) \oplus \mathcal{O}(1)] \rightarrow H^0(\mathbb{P}_1, \mathcal{O} \oplus \mathcal{O}(1)) \cong \mathbb{C}^4$ which is given on stalks by sending a germ to its 1-jet. (A conformal structure on $H^0(\mathbb{P}_1, \mathcal{O}(1) \oplus \mathcal{O}(1))$ is given by the cone of global sections that vanish somewhere on \mathbb{P}_1. \mathbb{P}_1 is identified with the set of α-planes in $H^0(\mathbb{P}_1, \mathcal{O}(1) \oplus \mathcal{O}(1))$ by: $\zeta \rightarrow \{\text{sections that vanish at } \zeta\}$.) In [8], we prove the following:

Theorem. $\omega : \text{Sp}e[\mathcal{O}(1) \oplus \mathcal{O}(1)] \rightarrow H^0(\mathbb{P}_1, \mathcal{O}(1) \oplus \mathcal{O}(1))$ is a null holomorphic curve that describes all null curves in \mathbb{C}^4 that do not lie on an α-plane. The first factor of its Gauss map is given by projection: $\gamma_{\omega 1} = \pi$.

Note that $\text{Re}(\omega) : \text{Sp}e[\mathcal{O}(1) \oplus \mathcal{O}(1)] \rightarrow \mathbb{R}^4$ describes (essentially) all minimal surfaces in \mathbb{R}^4.

The analogue of the linear structure in dimension 4 is the following:

Fact. $\omega : \text{Sp}e[\mathcal{O}(1) \oplus \mathcal{O}(1)] \rightarrow H^0(\mathbb{P}_1, \mathcal{O}(1) \oplus \mathcal{O}(1))$ is linear on stalks.

One can describe the analogue for null curves in \mathbb{C}^4 of the local construction in