BRIEF COMMUNICATIONS

ON INFINITE NONTANGENTIAL BOUNDARY VALUES OF
FUNCTIONS, SUBHARMONIC IN A LIPSCHITZ DOMAIN

M. G. Goluzina

The theorem of N. N. Luzin and I. I. Privalov [1] asserts that a function \(f \neq 0 \), holomorphic in the unit circle, can have nontangential boundary values equal to zero only on a set of zero measure. Introducing the subharmonic function \(u = \ln |f| \), we obtain an equivalent statement: the set of the points of the circumference, where the nontangential boundary values of the function \(u \) are equal to \(-\infty\), has zero measure. A conformal mapping enables us to obtain an analogous result for domains other than a circle.

A similar theorem for subharmonic functions in the semispace \(\mathbb{R}^{n+1}_+ \) is proved in [2]. The Kelvin transform proves this theorem for the unit ball in \(\mathbb{R}^{n+1} \). Below we give the proof for Lipschitz domains.

An open bounded domain \(\mathcal{D} \) in the Euclidean space \(\mathbb{R}^{n+1} \) is said to be a Lipschitz domain if for some \(c > 0 \) for each point \(Q \in \partial \mathcal{D} \) (the boundary of \(\mathcal{D} \)) there exists a neighborhood \(V(Q) \), a system of coordinates \((x, y) \), where \(x \in \mathbb{R}^n \), \(y \in \mathbb{R} \), and a function \(\varphi \) such that

1) \(|\varphi(x_1) - \varphi(x_2)| \leq c|x_1 - x_2| \) for any \(x_1 \) and \(x_2 \);
2) \(V(Q) \cap \mathcal{D} = V(Q) \cap \{ (x, y): y > \varphi(x) \} \);
3) \(V(Q) \cap \partial \mathcal{D} = V(Q) \cap \{ (x, y): y = \varphi(x) \} \).

One can assume that the neighborhood \(V(Q) \) is cylindrical in these local coordinates: \(Q = (x_0, y_0) \)

\[V(r, \delta, Q) = \{(\xi, \eta): |\xi - x_0| < r, |\eta - y_0| < \delta\} \]

and \(|\varphi(\xi) - y_0| < cr \leq \delta/2 \). One can select the parameters \(r_0 \) and \(\delta_0 \) of the cylinder to be the same for all the points \(Q \in \partial \mathcal{D} \) so that the bottoms of the cylinder \(V(r_0, \delta_0, Q) \) do not touch \(\partial \mathcal{D} \).

A cone \(\Gamma(h, \rho, Q) \) with vertex at the point \(Q = (x, y) \in \partial \mathcal{D} \), defined in the local system of coordinates by the equality

\[\Gamma(h, \rho, Q) = \{ (\xi, \eta): \rho|\xi - x| < \eta - y < h \} \]

is said to be a nontangential interior cone if there exist \(h_1 > h \) and \(\rho_1 < \rho \) such that \(\Gamma(h_1, \rho_1, Q) \subset \mathcal{D} \).

A function \(u: \mathcal{D} \to \mathbb{R} \) has at a point \(Q = (x, y) \in \partial \mathcal{D} \) a nontangent boundary value \(L \) if the restriction to any nontangential cone \(\Gamma(h, \rho, Q) \) has limit \(L \) at the point \(Q \). Notation:

\[\lim_{P \to Q} u(P) = L. \]

The harmonic measure of a set \(E \subset \partial \mathcal{D} \) relative to the domain \(\mathcal{D} \) at the point \(P \) will be denoted by \(\omega(P, E) \). The measures \(\omega(P_1, E) \) and \(\omega(P_2, E) \) are mutually absolutely continuous.

R. A. Hunt and R. L. Wheeden [3, 4] have proved the following lemmas.

LEMMA 1. If \(\mathcal{D} \) is a Lipschitz domain and \(\Delta(Q, r) = \partial \mathcal{D} \cap V(r, \delta, Q) \), then there exists a constant \(a > 0 \) such that \(\omega(P, \Delta(Q, 2r)) \geq a \) for \(P \in V(r, rs, Q) \), where \(r \leq r_0/2, rs \leq \delta_0; a \) depends only on \(s \) and \(\mathcal{D} \).

LEMMA 2. If \(\mathcal{D} \) is a Lipschitz domain, \(E \) is a Borel subset of \(\partial \mathcal{D} \), and the harmonic function \(u(P) = \omega(P, E) \), then the harmonic measure of the set of points of \(E \), at which the nontangential boundary values of the function \(u \) differ from 1, is equal to zero.

0001-4346/94/5512-0093$12.50 ©1994 Plenum Publishing Corporation
THEOREM. If \(u \) is a subharmonic function in a Lipschitz domain \(D \) and \(E = \{ Q \in \partial D: \lim_{P \to Q} u(P) = -\infty \} \), then \(\omega(P, E) = 0 \).

Proof. The boundary \(\partial D \) can be covered by a finite number of reduced standard cylindrical neighborhoods \(\partial D \subseteq \bigcup_{j=1}^{N} V(\bar{x}, \delta_{0}, Q_{j}) \). We denote

\[
V_{j} = V(r_{0}, \delta_{0}, Q_{j}), \quad \bar{V}_{j} = V(\bar{x}, \delta_{0}, Q_{j}), \quad E_{j} = E \cap \bar{V}_{j}, \quad A_{j} = \bar{V}_{j} \cap \partial D.
\]

It is sufficient to verify that \(\omega(P, E_{j}) = 0 \).

We fix \(j \) and we consider the corresponding system of coordinates \((x, y)\) for the point \(Q_{j} \). We select \(\rho = 2\epsilon \) and \(h > 0 \) so that for \(Q \in A_{j} \) the nontangential cone \(\Gamma(h, \rho, Q) \subset V_{j} \). On the set \(A_{j} \) we define a sequence of continuous functions

\[
g_{n}(x, y) = \sup \{ u(\xi, \eta): \rho |\xi - x| < \eta - y < \frac{h}{n}, \frac{h}{n} < \eta - y \}.
\]

The assertion \(g_{n}(x, y) \to -\infty \) is equivalent to the statement

\[
\lim_{(\xi, \eta) \to (x, y)} u(\xi, \eta) = -\infty.
\]

Therefore,

\[
E_{j} = \{ (x, y) \in A_{j}: \lim_{n \to +\infty} g_{n}(x, y) = -\infty \} = \bigcup_{Q \in E} \Gamma(h, \rho, (x, y))
\]

is a Borel set. We show that \(\omega(P, E_{j}) = 0 \). Otherwise, there exists a compactum \(B \subset E_{j} \) for which \(\omega(P, B) > 0 \). In the domain

\[
G = (D \cap V_{j}) \cap \bigcup_{Q \in E} \Gamma(\rho, \rho, Q)
\]

we define the harmonic function \(w(x, y) = \omega((x, y), B) \). We estimate \(w \) on \(\partial G \setminus B \). Part of this set, consisting of the points situated at a distance from \(B \) not smaller than \(r_{0}/4 \), form a compactum \(K \subset D \) with \(\max_{K} w = M_{1} < 1 \). If the point \((\xi, \eta) \in \partial G \setminus B \) is situated at a distance from \(B \) smaller than \(r_{0}/4 \), then \((\xi, \eta) \notin \bigcup_{Q \in E} \Gamma(\rho, \rho, Q) \) and \(\eta > \varphi(\xi) \). For the estimation we make use of Lemma 1. The point \(\xi \in \mathbb{R}^{n} \) is situated at a positive distance \(2r \) from the projection of \(B \) onto \(\mathbb{R}^{n} \). \(\Delta((\xi, \varphi(\xi)), 2r) \cap B = \emptyset \). We denote by \(\tilde{x} \) one of the points of the projection of \(B \) onto \(\mathbb{R}^{n} \), situated at a distance \(2r \) from \(\xi \). Then

\[
(\tilde{x}, \varphi(\tilde{x})) \in B, \quad (\xi, \eta) \notin \Gamma(\rho, \rho, (\tilde{x}, \varphi(\tilde{x})))
\]

and

\[
0 < \eta - \varphi(\xi) \leq (\eta - \varphi(\tilde{x})) + (\varphi(\xi) - \varphi(\tilde{x})) \leq (\rho + c)|\tilde{x} - \xi| = 6cr = sr < \delta_{0},
\]

since \(r < r_{0}/8 \) and \(cr_{0} < \delta_{0}/2 \). Our point

\[
(\xi, \eta) \in V(r, sr, (\tilde{x}, \varphi(\tilde{x}))).
\]

Therefore \(\omega((\xi, \eta), \Delta((\xi, \varphi(\xi)), 2r)) \geq a \) and \(w(\xi, \eta) \leq 1 - a = M_{2} < 1 \). We have assumed that \(\omega(P, B) > 0 \). By Lemma 2 there exists a point \((x_{0}, y_{0}) \in B \) at which \(w \) has nontangential boundary value equal to 1. We select \((x_{1}, y_{1}) \in G \) so close to \((x_{0}, y_{0}) \) that \(w(x_{1}, y_{1}) = M_{3} > \max\{M_{1}, M_{2}\} \) and, moreover, \(u(x_{1}, y_{1}) \neq -\infty \). We denote \(M_{0} = \sup_{G} u < +\infty \). For \(\alpha > 0 \) we define in \(G \) the subharmonic function

\[
\Omega_{\alpha}(x, y) = u(x, y) + \alpha(w(x, y) - w(x_{1}, y_{1})).
\]