On the Possible Role of Rossby Waves in the Formation of the Long-period Kuroshio Meander off of Kumano Nada and Enshu Nada

Harold Solomon

Abstract: It is pointed out that the rate of advance of a small transient meander east of Kyushu, which (according to the meager evidence available) seems to precede the formation of the large stable Kuroshio meander south of Kumano Nada and Enshu Nada, shows order of magnitude agreement with the barotropic Rossby wave velocity calculated on the assumption that the entire contiguous downstream flow (not merely the strong near-axis flow) behaves as a unified dynamical entity.

ROBINSON & TAFT (1972) have, in the manner of the bimodal distribution of steady inertial currents, found that the speed of translation of the meandering current is of the same order of magnitude as the barotropic Rossby wave velocity calculated under the assumption that the entire downstream flow behaves as a unified dynamical entity.

ROBINSON & TAFT (1972) have shown that the speed of translation of the meandering current is of the same order of magnitude as the barotropic Rossby wave velocity calculated under the assumption that the entire downstream flow behaves as a unified dynamical entity.

* 1973年8月7日受理
** 東京大学理学部地球物理学教室 113東京都文京区弥生2丁目 Geophysical Institute, University of Tokyo, Bunkyo-ku, Tokyo, 113 Japan
の研究ではロスビー波を常時波では無くて伝播するものとしている。この事は小規模な蛇行の過渡的な性質と矛盾しない。鉛直に積分した海流を考えているから、もちろん流圧のモードしか扱っていない。

東西方向に流れる一様な流速を持った海流が存在する所を順圧ロスピー波が伝播する場合には、その位相速度は $U - \beta/k^2$ となる。ここで、U は一様海流の流速であり、β はコリオリのパラメーターを経度方向に微分したものであり、k はロスピー波の波数である。考察中の海域では近似的に $\beta = 2 \times 10^{-11} \text{ m}^2/\text{sec}^2$ として良く、波長を 100 km とすれば $k = 2 \times 10^{-4}$ となる。従って、β/k^2 は 0.05 m/sec になる。WORTHINGTON と KAWAI (1972) は四国沖での黑潮の体積輸送量は、$84 \times 10^6 \text{ m}^3/\text{sec}$ であると報告している。この輸送量を 200 km の幅（WORTHINGTON と KAWAI の断面の幅よりも幾分狭い）と 4,000 m の深さ（海岸から離れてから黑潮の流れは一様に深海まで及んでいる）とすれば、その海流の流速に相当する U はおよそ 0.10 m/sec になる。従って、位相速度は 0.05 m/sec ≈ 0.1 ノートになり、蛇行は 1 日に 2.4 度移動する事になる。この値は

吉田昭三 (1961a, 3 頁) が報告した 1959 年の 5 月から 7 月にかけて東進した蛇行の移動速度より僅かに速いが、オーダーとしては同じである。なお、蛇行の移動速度が、東へ行くに従って増加する様に見える。これは、海流が深海に入って来るに従って、その平均流速が増加するはずだと言う事と矛盾しない。

中林 (1970) は 1969 年にも 1959 年と類似した小規模蛇行が発生した事を報告した。この年は蛇行が発生し始めたが、安定な A 型冷水塊は発生しなかった。

ロスピー波に似ているのは蛇行の東流部分である。潮岬に向う北流の力学的説明は本稿の範囲を越えるものである。実はいままでに発表されたすべての海流理論の範囲を越えている。

上の議論は小規模過渡的な蛇行の力学的性質を単に示唆するものであり、厳密な証明を与えるものでは無い。黑潮蛇行の問題への流圧理論の適用、又流れ全体が力学的に一体となって振舞うとする事は極めて大きな仮定である。なお、この様な基本的仮定の有効範囲を更に精密に決定するための研究が必要である。

この研究を進める上で、貴重な議論をして頂いた吉田