Joint error distributions are estimated for sampled-data measurements.

Various quantities in engineering are often measured by sampled-data methods. These methods are conveniently described by the following scheme. The sampling points are located on a straight line at a distance \(h \) from one another. We measure the length of the interval \([0, \varphi]\) on the same line. The estimate of the length of the interval \([0, \varphi]\) is computed as \(\hat{\varphi} = N\varphi h \), where \(N\varphi \) is the number of sampling points captured by the interval \([0, \varphi]\). The measurement error is \(\Delta\varphi = \varphi - \hat{\varphi} = \varphi - N\varphi h \).

Suppose that we simultaneously measure \(k \) quantities \(\varphi_1, \varphi_2, \ldots, \varphi_k \), the lengths of the intervals \([0, \varphi_1]\), \([0, \varphi_2]\), \ldots, \([0, \varphi_k]\). Denote by \(\Delta\varphi_i \) the errors in these measurements; \(A_i, i = 1, \ldots, k \), are some constants. We are often faced with the problem of estimating the error distribution when the sum \(\sum_{i=1}^{k} A_i\varphi_i \) is estimated by \(\sum_{i=1}^{k} A_i\hat{\varphi}_i \), i.e., the problem of estimating the probability

\[
P \left(\left| \sum_{i=1}^{k} A_i\Delta\varphi_i \right| > x \right)
\]

with \(x > 0 \), and also the problem of estimating the joint distribution of the errors \(\Delta\varphi_i, i = 1, \ldots, k \), i.e.,

\[
P : \Delta\varphi_i > x, i = 1, \ldots, k
\]

We will solve both these problems. We will also consider the case of independent measurements with the averaged estimators

\[
\varphi_i = \frac{1}{n} \sum_{j=1}^{n} \varphi_{ij}
\]

Note that \(n \) is not large enough to permit using the limit estimates that follow from the central limit theorem.

We will derive exact estimates for any \(n \). For \(\varphi \) we define \(\delta_{\varphi} \) by the equality \(\varphi = Nh + \delta_{\varphi} \), where \(N \) is the greatest integer such that \(Nh < \varphi, 0 \leq \delta_{\varphi} \leq h \).

Assumption 1. \(\delta_{\varphi_1}, \ldots, \delta_{\varphi_k} \) are independent random variables, each uniformly distributed on \([0, h]\). This means that the observations are sampled independently of one another.

Denote by \(\xi_1 \) the distance from the point 0 to the first sampling point located to the right of 0; by \(\xi_{\varphi_i} \) the distance from the point \(\varphi_i \) to the last sampling point on the interval \([0, \varphi_i]\), \(i = 1, \ldots, k \).

Assumption 2. \(\xi_1 \) is a random variable uniformly distributed on \([0, h]\) and independent of \(\delta_{\varphi_1}, \ldots, \delta_{\varphi_k} \). It is easy to see that the error of measuring the angle \(\varphi_i \) equals \(\Delta\varphi_i = \xi_1 + \xi_{\varphi_i} - h \) and

\[
\xi_{\varphi_i} = \begin{cases}
 h - \xi_1 + \delta_{\varphi_i}, & \text{if } \delta_{\varphi_i} < \xi_1; \\
 \delta_{\varphi_i} - \xi_1, & \text{if } \delta_{\varphi_i} \geq \xi_1.
\end{cases}
\]
Let us find the conditional distribution of \(\xi_{\varphi_i} \) given \(\xi_1 \). Note that for a fixed \(\xi_1 \)

\[
P \{ \delta_{\varphi_i} < \xi_1 \} = \xi_1/h, \quad P \{ \delta_{\varphi_i} > \xi_1 \} = 1 - \xi_1/h.
\]

Thus, for \(0 \leq x \leq h \),

\[
P_1 : \xi_{\varphi_i} < x \} = P \{ \xi_{\varphi_i} < x, \delta_{\varphi_i} < \xi_1 \} + P \{ \xi_{\varphi_i} < x, \delta_{\varphi_i} > \xi_1 \} =
\]

\[
= P \{ \delta_{\varphi_i} < x + \xi_1 - h, \delta_{\varphi_i} < \xi_1 \} + P \{ \delta_{\varphi_i} < \xi_1 + x, \delta_{\varphi_i} > \xi_1 \}.
\]

Since

\[
P \{ \delta_{\varphi_i} < \xi_1 + x, \delta_{\varphi_i} > \xi_1 \} = \frac{x}{h}, \quad x \leq \xi_1 - \xi_1;
\]

\[
P \{ \delta_{\varphi_i} < x + \xi_1 - h, \delta_{\varphi_i} < \xi_1 \} = \begin{cases} 0, & x \leq \xi_1 - \xi_1; \\ \frac{x + \xi_1 - h}{h}, & x > \xi_1 - \xi_1; \end{cases}
\]

we have \(P\{\xi_{\varphi_i} < x\} = x/h \) for \(0 \leq x \leq h \) and this probability is independent of the value of \(\xi_1 \), i.e., the random variables \(\xi_1 \) and \(\xi_{\varphi_i} \) are independent.

Lemma 1. The random vector

\[
\Delta \varphi = \{ \Delta \varphi_i, i = 1, k \}
\]

consists of elements representable in the form

\[
\Delta \varphi_i = \eta_1 + \eta_{\varphi_i}, \quad i = 1, k,
\]

where \(\eta_1 \) and \(\eta_{\varphi_i} \) are random variables uniformly distributed on \([-h/2, h/2]\), \(\eta_{\varphi_i} \) are independent of one another and of \(\eta_1 \) \((M_{\eta_1} = M_{\eta_{\varphi_i}} = 0, D_{\eta_1} = D_{\eta_{\varphi_i}} = h^2/3\)).

The lemma follows from the fact that

\[
\Delta \varphi_i = \xi_1 + \xi_{\varphi_i} - h = \xi_1 - \frac{h}{2} + \xi_{\varphi_i} - \frac{h}{2}.
\]

Denote \(\eta_1 = \xi_1 - h/2 \), and \(\eta_{\varphi_i} = \xi_{\varphi_i} - h/2 \). Then from the above argument it follows that \(\eta_1 \) and \(\eta_{\varphi_i} \) satisfy all the assertions of the lemma.

Definition 1. The random vector \(\vec{\xi} = (\xi_1, ..., \xi_k) \) is called strictly sub-Gaussian if \(M\xi = 0 \) and for every \(\vec{\lambda} \in \mathbb{R}^k \) we have the inequality

\[
M \exp \{ (\vec{\lambda}, \vec{\xi}) \} \leq \exp \left(\frac{1}{2}(B\vec{\lambda}, \vec{\lambda}) \right),
\]

where \(B \) is the covariance matrix of the vector \(\vec{\xi} \) \([2, 4]\).

Remark. For \(k = 1 \) the random variable \(\xi \) is called strictly sub-Gaussian \([1, 3]\). It satisfies the inequality

\[
M \exp \{ \lambda \xi \} \leq \exp \left(\frac{\lambda^2}{2} M \xi^2 \right)
\]

for all \(\lambda \in \mathbb{R}^1 \).

Lemma 2. The random vector \(\Delta \varphi' = \{ \Delta \varphi_i, i = 1, ..., k \} \) is strictly sub-Gaussian.

Proof.

\[
M \exp \{ (\vec{\lambda}, \Delta \varphi) \} = M \exp \left(\sum_{i=1}^{k} \lambda_i (\eta_1 + \eta_{\varphi_i}) \right) =
\]