CORRELATION OF NATURAL AND ARTIFICIAL RADIONUCLIDES IN SOILS WITH PEDOLOGICAL, CLIMATOLOGICAL AND GEOGRAPHIC PARAMETERS

L. A. SCHUCH,* D. J. R. NORDEMANN,a A. ZAGO, b D. L. DALLPALI, c J. M. GODOY, c B. PECEQUILO a

aDivisão de Geofísica Espacial, Instituto Nacional de Pesquisas (INPE), Caixa Postal 515, 12201-970 São José dos Campos, SP (Brazil)
bDepartamento de Solos, Universidade Federal de Santa Maria (UFSM), Campus Universitário, 97119-900 Santa Maria, RS (Brazil)
cInstituto de Radioproteção e Dosimetria, Comissão Nacional de Energia Nuclear (CNEN), Caixa Postal 37750, 22793 Rio de Janeiro, RJ (Brazil)
dInstituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear (CNEN), Travessa R, Número 40, 05422 São Paulo, SP (Brazil)

(Received October 1, 1993)

Various types of soil samples were collected in the southern part of Brazil, with depth intervals of 5 cm, down to 50 cm, using a specially designed sampler. Pedological analysis of these soils were performed. Nuclear activities of 137Cs (expressed in Bq m$^{-2}$) and radioactive natural element (226Ra, 228Ra and 40K) concentrations were determined by low background gamma-ray spectrometry. 137Cs concentrations were correlated with radioactive natural element concentrations and pedological, climatological and geographic parameters related to the soil samples collected.

The concentrations of natural radioactive elements such as 226Ra, 228Ra and 40K and man-made 137Cs were determined in soil samples and the results are expressed as Bq m$^{-2}$. 137Cs is a man-made radionuclide and was deposited in soil as fallout produced by atmospheric nuclear tests and accidents. Gamma-ray spectrometry was used to determine nuclear activities. Samples of soils, provided by the International Atomic Energy Agency (IAEA), were used to calibrate the detector.

SCHUCH et al. have studied 137Cs behavior in soil samples collected in 1991 in Paraná State, Brazil. These samples were compared with others collected in the same locations in March 1977, and November-December 1983. In all samples for which pedological analysis were performed, concentrations of 137Cs, 226Ra, 228Ra and 40K were measured. This study has shown the latitudinal dependence of 137Cs fallout, as well as the impossibility to measure 137Cs contribution from the Chernobyl accident among 137Cs concentrations measured, due to the intense leaching within these soils from high rainfall regions. It was also shown that, on the contrary of what

* On leave from Departamento de Física/Núcleo de Estudos e Pesquisas Aeroespaciais, UFSM.

Elsevier Sequoia S.A., Lausanne
Akadémiai Kiadó, Budapest
happens with 137Cs, natural radioactive elements were practically not affected by the effects of leaching, confirming the fact that they are strongly fixed to soil matrix or included in insoluble mineral of the bedrock.

The main purpose of this work was to determine possible correlations between 137Cs concentrations, natural radionuclide concentrations (226Ra, 228Ra and 40K), and pedological (Ph, clay and organic carbon, exchangeable bases Ca$^{++}$, Mg$^{++}$, K$^{+}$ and Na$^{+}$, cation exchange capacity and percentage of base saturation), climatological (mean annual rainfall and temperature) and geographic (altitude, latitude and longitude) parameters. 137Cs distributions within the soil profiles were also analyzed.

Experimental

In June 1991, in Rio Grande do Sul State, 7 profiles of soils were collected down to 50 cm, with depth intervals of 5 cm, using a carbon steel sampler (area of 20 cm x 10 cm and depth of 5 cm) specially designed for this purpose, as shown in Table 1.

Samples were collected, prepared, and the concentrations of radioactive elements measured, following the methodology described in SCHUCH et al. Pedological analysis was performed by the Soil Department of the Rural Sciences Center of the Federal University of Santa Maria. Table 2 presents the mean values of 10 samples obtained for each soil profile for the concentrations of radionuclides and for the pedological parameters of all soil from Rio Grande do Sul State. Climatological and geographic parameters of all soil samples are given in Table 1.

Results and Discussion

The coefficients of linear correlations for 137Cs concentrations per unit and the rest of the parameters shown in Tables 1 and 2 are presented in Table 3.

From Table 3, we can conclude that there is a certain linear correlation between the concentrations per unit area of 137Cs and the concentrations of K, C, Ca$^{++}$, Mg$^{++}$ and CEC (cation exchange capacity). This result seems to show that the fixation of Ca$^{++}$ and Mg$^{++}$ by clays prevents a larger absorption of 137Cs by the clays, even though the 137Cs has a greater affinity for the clays. The result obtained for the CEC is explained in the same way. The larger the CEC, the easier the way 137Cs, eventually adsorbed by the clays, will be substituted by extractable bases.

The soils taken for that work were chosen in locations of similar mean annual rainfall, to eliminate this possible influence in the correlations made with pedological parameters. However,