On a regular form defined by a pseudo-function

P. Maroni

Université Pierre et Marie Curie – C.N.R.S., Laboratoire d’Analyse Numérique, 4 Place Jussieu, F-75252 Paris Cedex 05, France

We study forms which are closely related to the Legendre form. The Stieltjes functions and the recurrence coefficients of the polynomials associated with these forms are explicitly given.

Keywords: Orthogonal polynomials, forms, representation.

AMS(MOS) subject classification: 42C05.

0. Introduction

Recently, we have given a representation for the inverse of Tchebychev forms [8]

\[
\left\langle T^{-1}, f \right\rangle = \frac{1}{\pi} \int_{-1}^{1} \frac{f(x)}{1 + \sqrt{1 - x^2}} \, dx - \frac{1}{\pi} \left\langle Pf \frac{Y(1 - x^2)}{x^2}, f \right\rangle,
\]

where

\[
\left\langle T, f \right\rangle = \frac{1}{\pi} \int_{-1}^{1} \frac{f(x)}{1 + \sqrt{1 - x^2}} \, dx
\]

are respectively the Tchebychev forms of second and first kind; and

\[
\left\langle Pf \frac{Y(1 - x^2)}{x^2}, f \right\rangle = Pf \int_{-\infty}^{+\infty} \frac{Y(1 - x^2)}{x^2} f(x) \, dx
\]

\[
= \lim_{\varepsilon \to 0^+} \left(\int_{-1}^{-\varepsilon} \frac{f(x)}{x^2} \, dx + \int_{-\varepsilon}^{+1} \frac{f(x)}{x^2} \, dx - \frac{2}{\varepsilon} f(0) \right)
\]

for each polynomial f and with

\[
Y(x) = \begin{cases}
0, & x \leq 0, \\
1, & x > 0.
\end{cases}
\]
The inverse \(u^{-1} \) of \(u \) is defined by \(u^{-1}u = uu^{-1} = \delta \) where \(\langle \delta, f \rangle = f(0) \) and the product \(uv \) of the two forms is given by the moments \((uv)_n := \langle uv, x^n \rangle = \Sigma_{\mu + \nu = n}(u)_{\mu}(v)_{\nu}, n \geq 0 \) [5,6].

Let us recall the definition of regularity: a form \(u \) is called regular if there exists a monic polynomial sequence \(\{P_n\}_{n \geq 0} \) such that
\[
\langle u, P_n P_m \rangle = k_n \delta_{n,m}, \quad n, m \geq 0; \quad k_n \neq 0, \quad n \geq 0.
\]

Our aim is to prove the regularity of the form \(Pf Y(1 - x^2)/x^2 \) and to build the orthogonal sequence \(\{Z_n\}_{n \geq 0} \)
\[
\left\langle Pf \frac{Y(1 - x^2)}{x^2}, Z_n Z_m \right\rangle = k_n \delta_{n,m}, \quad n, m \geq 0
\]
with \(k_n \neq 0, n \geq 0 \) and
\[
Z_0(x) = 1, \quad Z_1(x) = x
\]
\[
Z_{n+2}(x) = xZ_{n+1}(x) - \gamma_{n+1}Z_n(x), \quad n \geq 0.
\]

For other examples of generalized weights, see [2–4].

1. The form \(Pf[V(x)]/x^2 \)

More generally, let us consider the form \(Pf [V(x)]/x^2 \) where we suppose that \(V \) is a locally integrable function with rapid decay satisfying
\[
Pf \int_{-\infty}^{+\infty} \frac{V(x)}{x^2} \, dx \neq 0, \quad \int_{-\infty}^{+\infty} V(x) \, dx = 1.
\]
Let \(v \) be defined by \(\langle v, f \rangle := \int_{-\infty}^{+\infty} V(x)f(x) \, dx \). Further, we suppose that \(v \) is regular. Then, let \(u \)
\[
\langle u, f \rangle = \lambda Pf \int_{-\infty}^{+\infty} \frac{V(x)}{x^2} f(x) \, dx \tag{1.1}
\]
with
\[
\lambda = \left(Pf \int_{-\infty}^{+\infty} \frac{V(x)}{x^2} \, dx \right)^{-1}.
\]
We have
\[
x^2u = \lambda v, \quad \lambda = (u)_2. \tag{1.2}
\]
Equivalently [6]
\[
u = \delta - (u)_1 D\delta + \lambda x^{-2}v, \tag{1.3}
\]
where the left-multiplication \(hw \) is defined by \(\langle hw, f \rangle = \langle w, hf \rangle \), the derivative