Passive Hemagglutination

Mixture of a pathological blood (cirrhosis of the liver) with a normal blood:

<table>
<thead>
<tr>
<th>Pathological serum* incubated during 2 h at 37°C in contact with:</th>
<th>Normal serum* incubated during 2 h at 37°C in contact with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathological red cells ...</td>
<td>Normal red cells ..</td>
</tr>
<tr>
<td>Normal red cells ..</td>
<td>Normal red cells ..</td>
</tr>
<tr>
<td>Pathological platelets ..</td>
<td>Pathological platelets ...</td>
</tr>
<tr>
<td>Normal platelets ..</td>
<td>Normal platelets ...</td>
</tr>
<tr>
<td>Clot of the pathological plasma (without anticoagulant)</td>
<td>Clot of the pathological plasma (without anticoagulant)</td>
</tr>
<tr>
<td>Clot of the pathological plasma (with anticoagulant)</td>
<td>Clot of the pathological plasma (with anticoagulant)</td>
</tr>
<tr>
<td>Without any contact ..</td>
<td>Without any contact ...</td>
</tr>
<tr>
<td>Physiological saline incubated during 2 h at 37°C in contact with:</td>
<td>Physiological saline incubated during 2 h at 37°C in contact with:</td>
</tr>
<tr>
<td>Pathological clot ..</td>
<td>Normal clot ..</td>
</tr>
</tbody>
</table>

fraction I coating the tanned red cells. This substance agglutinates these red cells only when it has been heated previously for 30 min at 56°C.

The immunological nature of this substance is doubtful. Experiments have shown at least two different kinds of behavior in relation to rabbit antibodies against human platelets: (1) the rabbit antibody is formed in the serum and is not liberated by the incubated clot; (2) it does not require heating at 56°C to promote hemagglutination.

The relation between hemagglutination and fibrinolysis has been demonstrated by two different approaches:

(a) Clots of patients, in which the reaction was found strongly positive, have marked tendency to fibrinolysis. This was seen after incubation of blood, diluted with equal volume of physiological saline, at pH 7.2, under sterile conditions, during 24 h at 37°C. In all cases complete lysis has been observed.

(b) 1 cm³ of normal blood, clotted at 37°C in the presence of 15 mg of purified bovine fibrinolysin, gives off, after 2 h of incubation at 37°C, a serum capable also to promote the reaction. Complete lysis of the clot is observed after 24 h under the same conditions.

Conclusions. In the course of fibrinolysis of the clot, which is an especially rapid process in liver cirrhosis, this clot liberates a substance which is capable, after heating of 30 min at 56°C, to react with tanned erythrocytes coated with a plasmatic substance found in fraction I. It is probable that this phenomenon is not limited to liver cirrhosis, but can be found also in other syndromes associated with fibrinolysis. It is believed this is an exacerbation of a normal physiological process.

We wish to thank Drs. E. C. Loomis of Detroit and J. P. Soulier of Paris for the preparations of bovine fibrinolysin and for their advice.

J. Daussut, Y. Bergerot-Blondel, and A. Paraf

Résumé

Au cours de la fibrinolyse, particulièrement précoce au cours des cirrhoses du foie, le caillot libère une substance capable après chauffage de 30 min à 56°C de réagir avec des hématies recouvertes d’une substance plasmatique présente dans la fraction I. Il est probable que le phénomène n’est pas limité aux seules cirrhoses hépatiques, mais s’étend à d’autres syndromes hémorragiques (fibrinolytiques) et qu’il s’agirait de l’exagération d’un processus physiologique normal.

A Dialyzable Factor from Plasma Responsible for the “Viscous Metamorphosis” of the Blood Platelets. Its Role in Clot Retraction and Haemostasis*

During coagulation of normal blood, the thromboocytes undergo a series of morphological changes which lead finally to their total disintegration. This phenomenon is generally called “viscous metamorphosis” of the platelets, and its most easily observed manifestation consists in agglutination and clumping of these cells. Since it is known that in most cases thrombus formation in venous thrombosis starts out from agglutinated and fused platelets adhering to the wall of a blood vessel, attention in recent years has been focused on the factors involved in the thrombocyte agglutination. A new dialyzable factor was discovered in the course of the following experiments.

Some authors still believe clumping of the thromboocytes to be a secondary phenomenon due to the conversion of small amounts of fibrinogen to fibrin or pro-fibrin*, in spite of the fact that platelets in afibrino-genaemic plasma agglutinate normally⁶, and that elec-

* Supported by grants from the Swiss National Foundation for Scientific Research and the F. Hofmann-La Roche Foundation.

1. Throughout this paper agglutination is understood in the sense of describing the first manifestation of viscous metamorphosis, thus excluding nonspecific aggregation or serological reaction of intact cells with antiplatelet antibodies.

tron microscopy⁴ and staining methods disprove the presence of fibrin in the agglutinates. We have been able to show that a “serum” rich in prothrombin obtained by recalcification from a platelet-free plasma and containing no detectable amounts of fibrinogen agglutinates added thrombocytes completely in a few minutes. On the other hand, normal serum obtained from spontaneously clotted fresh blood has lost this platelet-destroying property; this suggests that one of the responsible factors is consumed during clotting in the presence of platelets. Serum from patients with haemophilia A or haemophilia B, lacking antihaemophilic factor or Christmas factor, respectively, proved fully active in our agglutination test⁴. This disproves the explanation offered by Berg-sage⁵ that the combination of Christmas factor, antihaemophilic globulin and calcium is responsible for platelet agglutination. The pathological sera with pronounced platelet-destroying activity, i.e. from cases of haemophilia A and B, lacking antihaemophilic factor or Christmas factor, has been their high contents of prothrombin.

Our work seemed therefore in agreement with the observations by Wright and Minot⁶ who found as early as 1917 that “serozyme” can cause viscous metamorphosis of the platelets. However, in our experiments incubation of washed platelets with prothrombin and calcium did not cause agglutination of the cells. (Platelets were obtained by centrifugation from citrated bovine blood, washing 5 times in NaCl-citrate solution, and suspending in physiological saline). The same negative result was found with tissue thromboplastin, Ca, and prothrombin, or when an equivalent amount of thrombin was added to washed platelets. Purified preparations of prothrombin or thrombin alone are therefore not responsible for platelet agglutination; presence or absence of a wettable surface is thereby without influence.

According to our concept of clot-retraction, material in the platelets—and in no case fibrin—is the retractile substance, the fibrin playing the completely passive role of being drawn together by the retracting “pseudo-polidrome” material of the thrombocytes. Sending out of pseudopodia by the platelets is considered to be the first sign of viscous metamorphosis, and therefore the ability of a thrombocyte-containing fibrin clot to retract was taken as a criterion for the presence of a system capable of producing viscous metamorphosis of the platelets in the fibrin network.

Such minimum systems for clot-retraction have been described by several authors. Budtz-Olsen⁴ found that in a system of fibrinogen, prothrombin, CaCl₂ and platelets retraction occurs; according to Elicott and Conley⁸ thrombin, fibrinogen, platelets and serum albumin are another example for such a minimum system. Working with the retraction test described by Fonio¹¹ and with material of bovine origin, we found that neither system led to retractile clots as long as the components used were pure enough. (Fibrinogen was prepared according to Ware, Guest, and Sægers; prothrombin was adsorbed on BaSO₄ and reprecipitated after elution. Acetone-precipitated lung thromboplastin, Armour cryst. bovine albumin, thrombin “Roche”, and thoroughly washed platelets were used.) It was found, however, that a system consisting of a dialyze from citrated or oxalated bovine plasma or serum (0·9 ml), washed bovine platelets (0·2 ml), bovine fibrinogen (0·4 ml, 0·6% in NaCl) and coagulated by addition of 0·1 ml of a 0·1% solution of thrombin “Roche”, was always capable of retracting normally to one-third of the original length of the clot. (In terms of fluid expressed this corresponds to well over 90% of the original volume of the unretracted clot.) It can be shown that the dialyzable substance is a limiting factor with respect to completeness of retraction, that is, the lengths of the fully retracted clots depend upon its concentration. This strongly suggests that the dialyzable factor and the thrombocytes are linked together by some stoichiometric relationship.

The same system without fibrinogen should cause viscous metamorphosis of the platelets and this was indeed the case. It can be shown that retraction begins only after viscous metamorphosis has taken place. By using a more concentrated suspension of thoroughly washed intact platelets, a much more direct proof for our view can be offered: a few minutes after addition of dialyze and thrombin at 37°C the platelets formed a fragile coagulum, which, carefully detached from the walls of the test tube, retracted rapidly to a small knob. This occurred in a system completely free of even traces of fibrinogen. The solution expressed from this retracted platelet-clot added to a small amount of fibrinogen clotted the latter due to the presence of thrombin. This clot showed no retraction whatever, although it must have been rich in serotonin. Retraction also did not occur when the dialyze in our minimum system was replaced by the same volume of a solution of 100 mg% serotonin in NaCl. This result is in obvious contrast to the findings by Fenichel and Sægers. We believe therefore, that a viscous protein contained in the thrombocytes, formerly called by us protein “S”, and not the fibrin is the retractile material in thrombocyte-containing fibrin clots.

The implications of a dialyzable and thermostable factor (30 min at 100°C) in plasma which together with thrombin causes the viscous metamorphosis of platelets are evident; it obviously is part of the system which is essential in the mechanism of haemostasis in addition to the fibrinogen-fibrin system. It may offer in part an explanation for cases described of bleeding tendencies in spite of a completely intact clotting system, which up to now have been ascribed to defective thrombocytes (i.e. thrombasthenia Glanzmann). It may be noted that in these conditions retraction is indeed sometimes absent. The existence of a self-contained system responsible for haemostasis by clumping of the platelets followed by

¹³ H. Hartrey (Klin. Wschr. 32, 139 (1954)) mentions also a factor responsible for retraction which could not be obtained by methods of protein-fractionation.
¹⁵ Until now only thrombin “Roche” has been used in our work. The possibility of a contamination of this product by other factors has to be considered, and work in this direction is in progress.