NEW GAMMA RAYS FOLLOWING THE ^{233}U α-DECAY

O. El Samad, C. Ardisson, M. Hussonnois* and
G. Ardisson

Laboratoire de Radiochimie,
Université de Nice Sophia Antipolis,
28, avenue Valrose, F06108 Nice Cédex 2, France

*Institut de Physique Nucléaire,
BP 1, F91406 Orsay Cédex, France

Received 9 December 1991
Accepted 3 January 1992

^{233}U α-decay was reinvestigated using a
radiochemically purified source and high
efficiency HPGe coaxial detectors; the low-
energy γ-spectrum was also measured using a
LEPS detector. The energy and intensity
values of one hundred sixty three γ-lines
were determined, from which forty eight are
newly reported with respect to the last
study of Canty et al. A revised 229Th level
scheme was built, using the Ritz combina-
tion principle, in which nine levels are
newly observed, at 371.3, 381.8, 465.5,
569.2, 584.9, 605.1, 620.8, 656.9 and
749.9 keV.

INTRODUCTION

The decay of long-lived ^{233}U ($T = 1.59 \times 10^5$ y) has
been investigated by many authors during the 1970's,
by high resolution γ-spectroscopy using Ge detectors.
The main work is due to Kröger and Reich1,2 which used
both single γ-spectroscopy with Ge(Li) detectors and $\gamma-\gamma$ coincidence experiments; these authors reported the existence of 118 γ-rays between 25 and 1119 keV. However, 29 γ-lines could not be interpreted in the 229Th level scheme. A later study performed by Canty et al.3 demonstrated the existence of 117 γ-lines, among which 26 were newly reported below 480 keV, whereas seventeen high energy γ-lines described by Kröger and Reich1 were not confirmed. Although these results1-3 were compiled entirely in the recent issue of Nuclear Data Sheets4 for the mass 233, and considering the rather interesting situation of the 229Th nucleus, at the borderline of the region of masses for which the reflection asymmetric rotor model has been successfully applied, it seemed to us quite necessary to remeasure the γ-spectrum following the 233U α-decay using high-efficiency HPGe detectors as well as a low-energy photon spectrometer (LEPS).

This work is a part of our reinvestigations devoted to the decay chain 241Am\rightarrow^{237}Np\rightarrow^{233}Pa\rightarrow^{233}U (Refs 5,6).

Source preparation

Two 233U samples, provided by the C.E.A., of 10 and 100 mg masses and with isotopic purity better than 99.9\%, were used. The main contaminant was 232U ($T = 70$ γ) produced by the interfering reaction 233U(n,2n) during the 232Th target irradiation in the reactor. Hence, the source contained both 229Th and daughters from 233U decay, and 228Th and its short-lived daughters, 212Pb, 212Bi, and 208Tl, from 232U α-decay. So a radiochemical separation was envisaged before measurements to discard the main part of high-energy γ-emitters which could obscure the low-intensity γ-lines following 233U decay.