TEMPERATURE DEPENDENCE OF PULSE-HEIGHT DISTRIBUTION IN LIQUID SCINTILLATOR

Y. Homma*, Y. Murase, M. Ishii

Kyoritsu College of Pharmacy
1-5-30, Shibakoen, Minato-ku,
Tokyo 105, Japan

Received 18 July 1984
Accepted 8 August 1984

The differential pulse-height distributions for 241Am, 131mXe, 14C and 3H are investigated as a function of temperature. The spectra are shifted toward higher pulse-heights with decreasing temperature. During the measurement, the temperature of photomultipliers of liquid scintillation system are kept at 8.8 °C. The counting efficiency of 14C and 3H increases with decreasing temperature. The mechanism involved in this effect is discussed.

INTRODUCTION

Several investigations have been reported on the measurement of temperature effect of liquid scintillator. Selieger et al.1 reported that the light output of gas-free liquid scintillators increases with decreasing temperature under γ-ray and α-particle excitation. How-

*To whom correspondence should be addressed.
ever, no reasonable interpretation was attempted in that paper. Some authors obtained a similar result and explained their data in terms of the temperature response of photomultiplier, etc. More recently, Kaczmarczyk and Ruge, who used 14C and 3H samples in a study of temperature dependence of counting efficiency in liquid scintillation counting, showed that the counting efficiency of 14C and 3H is improved on sample-cooling and concluded that the effect is contributed to the shift of the balance-point and calibration curve for the external standardization, etc.

Investigations at this laboratory of energy transfer in liquid scintillator were stimulated by these earlier reports and during the course of a spectral study concerning the relative pulse-height distributions from the liquid scintillator, we found that the pulse-height distributions for 241Am/α-particles, 5.49 and 5.44 MeV/, 133Xe/ internal conversion electrons, 134 and 164 keV/, 14C and 3H in liquid scintillator increase markedly with decreasing temperature, and that the counting efficiency of the β-emitters also increases with decreasing temperature, although that for α-particles and internal conversion electrons remain unchanged. This paper presents more complete data on the temperature dependence of the pulse-height distributions and the counting efficiencies, as well as reasonable explanation for these effects.

EXPERIMENTAL

The 241Am source was dissolved in 1.0N HCl from which it was extracted into 25% v/v solution of di-2-ethylhexyl-phosphoric-acid/HDEHP/ in toluene. Aliquots of this solution were added directly to the scintillator