NEUTRON ACTIVATION AND MASS SPECTROMETRIC MEASUREMENT OF 129I

R.S. Strebin, Jr., F.P. Brauer, J.H. Kaye, M.S. Rapids, J.J. Stoffel

Pacific Northwest Laboratory*
Richland, Washington 99352, USA

Received 9 February 1988
Accepted 19 February 1988

An integrated procedure has been developed for measurement of 129I by neutron activation analysis and mass spectrometry. An iodine isolation procedure previously used for neutron activation has been modified to provide separated iodine suitable for mass spectrometric measurement as well. Agreement between both methods has been achieved within error limits. The measurement limit by each method is about 10^7 atoms /2 fg/ of 129I.

INTRODUCTION

Iodine-129 is one of the longest-lived fission products of major interest to the nuclear industry1. Measurements of environmental 129I have been made for many years by neutron activation analysis /NAA/.$^2-^5$. The neutron

*Operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO 1830.
activation method requires a nuclear reactor for neutron irradiation and radiochemistry facilities for post-irradiation processing of samples. The desirability of eliminating the need for such facilities led to early efforts by McHugh and Sheffield to develop a mass spectrometric method for iodine isotopic analysis. In their work, interfering contaminants limited measurement sensitivity for 129I to about 1 ppm of the natural 127I. This sensitivity is not adequate for the measurement of 129I in many environmental materials.

More recently, Delmore used negative surface ionization mass spectrometry (MS) to measure fission product iodine in which 129I was the major isotope. He also measured the background level in the mass spectrum of natural 127I which indicated the feasibility of extending measurement sensitivity beyond 1 ppm. Stoffel subsequently demonstrated the ability of negative surface ionization mass spectrometry to measure trace levels of 129I /Ref. 8/. His measurements were limited to pure iodine compounds prepared in the laboratory.

Further work at the Pacific Northwest Laboratory to develop procedures for extracting iodine from environmental and other materials in a form and purity suitable for both NAA and MS has now been completed. The work reported here provides an integrated procedure for the measurement of 129I by both methods. Measurements of 129I at levels down to the measurement limit of the methods are also reported.

MATERIALS AND METHODS

Steps in the integrated procedure for 129I measurement by neutron activation analysis and mass spectrometry are given in Fig. 1. Each step is discussed below.