It was established by chemical degradation that RhCl₃·3H₂O catalyzed tritiation with HTO occurred with virtually 100% regioselectivity at the ortho-positions of benzamide as well as various anilides and benzoic acid. While tritiation has not been found in the alkyl C-H bond in anilide molecules, in the present experiments tritium was incorporated into the active methylene group of α-phenylacetamide. This finding suggests that the present tritiation occurs more readily at polar C⁶⁻⁻⁻┅┅・・・・・
with the catalyst1,2. On the other hand, from the synthetic viewpoint, it was reported that \(\text{RhCl}_3\cdot3\text{H}_2\text{O} \) catalyzed deuterium-hydrogen isotope exchange occurred with high regioselectivity at the o-positions of various aromatic acids, anilides, amides, and amines3-5. The location of deuterium was determined by NMR. Recently, some studies with HTO were carried out to shed light on the mechanism of the present regioselective hydrogen isotope exchange reaction6-9. Experimental results with various anilides as substrates showed electronic and steric effects by acyl groups8 and an electronic effect by the substituent at the para-position9 on the extent of T-for-H exchange. The former effects supported the previous suggestion that the observed regioselectivity arose via initial coordination of the nitrogen atom of anilides to the rhodium(III) chloride catalyst6,7. The latter one agreed with the mechanism that the electron-withdrawing substituent promoted the exchange reaction. A plausible mechanism for the effect is that tritiation proceeds by T-for-H exchange between C-Hδ+ at the o-position of anilides and O-Tδ+ of HTO as a ligand of rhodium(III).

The rhodium(III) chloride catalyzed T-for-H exchange has not been reported in nonpolar alkyl C-H bonds of the N-acyl and methyl groups attached to the benzene ring of anilides. However, if the mechanism described above is correct, tritiation will be observed at the polar Cδ--Hδ+ bond of a so-called active methylene group with substituents delocalizing a negative charge on the carbon atom at both sides through the present catalyzed reaction. This encouraged the authors to confirm the mechanism with \(\alpha \)-phenylacetamide.